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Abstract

There has been much recent interest in out-
of-distribution (OOD) generalization, where
inputs from unseen classes are presented to a
neural network. In this work, we take a closer
look at how neural networks predict for these
problems. Psychologists suggest that humans
tend to categorize inputs from unseen classes
to the category of the closest seen example;
we investigate whether neural networks also
behave similarly. We formalize this behavior
as the nearest category generalization (NCG)
problem and design experiments to explore
whether it is happening in neural networks.
We find that neural networks do tend to fol-
low NCG for unseen classes in pixel as well
as feature spaces, and the accuracy for NCG
is typically higher in feature space. This sug-
gests that for unseen classes, neural networks
often predict the class of the closest training
input in the feature space. Additionally, we
see that adversarially robust neural networks
have more enhanced NCG properties. Finally,
we investigate whether this also happens for
other kinds of OOD inputs beyond unseen
classes, such as data with natural corruptions.

1 Introduction

Recently, there has been much interest in various as-
pects of out-of-distribution (OOD) generalization, such
as transfer learning (Salman et al., 2020), outlier de-
tection (Meinke and Hein, 2019), and few-shot learn-
ing (Koch et al., 2015). We want to understand the
output of neural networks on OOD inputs, and whether
there are patterns in the predicted values. By observ-
ing the outputs of a neural network with OOD inputs
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in Table 1, we find that there are indeed some patterns.
The question is, what is this pattern? A line of work in
the psychology literature posits that humans categorize
unseen examples into the most similar category they
have seen before (Nosofsky, 1986; Rouder and Ratcliff,
2004; Austerweil et al., 2019; Sanborn et al., 2021). For
example, when a child sees an orange for the first time,
he may categorize an orange as a type of similar fruit he
has seen before, such as a tangerine. Inspired by this
unique tendency of humans, we investigate whether
neural networks show similar behavior.

removed
class

top most
predicted class

second most
predicted class

CIFAR10 airplane ship bird

CIFAR100 aquatic
mammals fish small mammals

Table 1: We remove images of a class from training
set of CIFAR10 and CIFAR100, and train a neural
network on the modified trianing set. We then look at
the predictions of the neural network on these removed
images and record their top two most predicted classes.
From the result, we can see that the outputs that these
two networks produce follow some patterns. “airplanes”
are predicted as a ship or bird possibly because they
have similar background of the sky. “aquatic mammals”
are predicted as fish possibly because they are both in
the water.

We test whether neural networks also tend to predict
OOD examples as the nearest category in the train-
ing set, and we call this property Nearest Category
Generalization (NCG). We begin with setting up a
framework for testing whether neural networks show
signs of NCG. We use images from an unseen class as
the OOD examples. We take existing datasets, remove
examples of a certain class from the training set, and
treat the removed examples as OOD examples. We
then train a neural network on the training set and
examine its prediction of these OOD examples. If a
significant amount of OOD examples are classified as
the same category as their nearest training example,
then it shows that there are some particular structures
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in the prediction of the unseen class. We define the
NCG accuracy as the portion of OOD examples that
are predicted as the same label as their nearest training
example (while measuring in-distribution accuracy as
usual).

Building on this testing framework, we measure the
NCG property of neural networks. We consider four
datasets and select ten different unseen classes for each
dataset. We train a neural network on each of these 40
different combinations of datasets and unseen classes.
We find that the NCG accuracies of all networks are
significantly above the chance levels. This shows con-
crete evidence that neural networks follow NCG prop-
erty to predict the unseen class (instead of predicting
randomly).

Adversarial robust neural networks are trained to pro-
duce smooth predictions when the input is slightly
altered. This is another important ability that humans
also possess (Yang et al., 2020; Zhang et al., 2019;
Madry et al., 2017). Does making the network more
smooth (or robust) affect their NCG property? We
repeat the previous experiments with robust networks
and find that robust networks not only have an NCG
accuracy above chance, but also generally have a higher
NCG accuracy than the naturally trained models. This
indicates improving adversarial robustness may make
the model follow NCG more rigorously, and there are
certain connections between adversarial robustness and
the NCG property.

Why do robust networks generally have higher NCG
accuracies? A plausible explanation for why this
may happen is that robust training algorithms like
TRADES (Zhang et al., 2019) enforce the network to
be locally smooth in a ball of radius r around training
data (Yang et al., 2020); if the OOD inputs are closer
than r from their nearest training example, then they
would get classified in the same class. Surprisingly, we
find that this is not the case. Balls of radius r around
most training examples are so small that they cover
almost none of the OOD inputs. Moreover, OOD in-
puts that are classified with their nearest categories are
considerably further than from their closest training
examples, which, in turn, continues to have adversarial
examples that are closer than the robustness radius r
(see Figure 1). This suggests that the robust neural
networks may be smoother in some directions than
others, and perhaps smoother than they were trained
to be along the natural image manifold.

A natural question to ask is – does NCG extend to
other types of OOD data beyond the unseen classes?
To answer the question, we look at the corrupted data
including CIFAR10-C, CIFAR100-C, and ImgNet100-C
proposed by Hendrycks and Dietterich (2019). We have

x
r

OOD dist

Figure 1: Robust networks tend to predict smoothly at
a larger distance in some directions, e.g., toward natural
OOD examples (green point), but are susceptible to
adversarial examples that are closer in the worst-case
directions (red point).

(a) (b) (c) (d)

Figure 2: OOD examples (b) and (d) are far in pixel
space from their nearest training examples (a) and (c).
Surprisingly, (b) is predicted as a 4 and (d) as a 7,
indicating the network is smooth in these directions.

three observations. First, the NCG accuracies for all
networks (including natural and robust networks) are
above the chance levels, and the NCG accuracies of
robust networks are also generally higher than natural
networks. This result allows us to extend our previous
findings to many kinds of OOD data. Second, corrupted
examples that are correct in terms of NCG accuracy
have a higher chance of being classified correctly. Third,
in general, the test and NCG accuracies of a network
decreases as the intensity of corruption increases. We
find that robust models have a slower rate of decrease
comparing with naturally trained models. The second
and third observations suggest that different forms
of robustness, including adversarial robustness, the
robustness to corruptions, and the NCG accuracy, may
be inherently interconnected.

In summary, our work uncovers an intriguing out-of-
distribution generalization property of neural networks
called the nearest category generalization and investi-
gates it in detail. We have identified that the NCG
property exists for many neural networks and OOD
types. We also show a connection among the NCG
property, adversarial robustness, and robustness to cor-
rupted data. We posit that the NCG property is a
consequence of the inductive bias produced by neural
networks (especially for adversarially robust networks).
It is interesting that this inductive bias happens to
be similar to some human behaviors and enforcing
adversarial robustness, which is another feature that
humans possess, can make the NCG property more
salient. Many scholars conjecture that the effectiveness
of deep learning may be coming from its similar struc-
ture to the human brain (Lake et al., 2017; Hassabis
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et al., 2017; Sejnowski, 2020), which allows the neural
networks to share some of the inductive biases from the
brain. This work can be an additional piece of evidence
supporting this theory. In addition, how neural net-
works generalize so well is still an open question (Liu
et al., 2020). Our work provides some insights into
how networks generalize, and we expect future work to
build upon this knowledge.

2 Preliminaries

Nearest Category Generalization. At training
time, we are given a set of examples tpxi, yiq, i “
1, . . . , nu from one of C categories. At test time, we
evaluate on examples drawn from a combination of the
training distribution and from a new pC ` 1q-st cate-
gory. Examples from categories t1, 2, . . . , Cu are con-
sidered in-distribution and those from class C ` 1 out-
of-distribution. For example, we may see the MNIST
classes 0´ 8 at training time, and all MNIST classes at
test time. We call the set of in-distribution test exam-
ples the test set, and the set of OOD test examples the
OOD set. In addition to test accuracy, we also look at
the NCG accuracy, which is the fraction of inputs from
the pC ` 1q-st category that is assigned the same label
as its nearest neighbor in the training data. Through-
out, we use the shorthand dataset-wo# to mean that
this class number is the unseen class (category). For ex-
ample, we let MNIST-wo0 and MNIST-wo9 are MNIST
with unseen digits 0 and 9, CIFAR10-wo0 is CIFAR10
with unseen airplane and CIFAR100-wo0 is CIFAR100
with unseen aquatic mammals. We sometimes shorten
this as M-0, C10-0, C100-0, etc.

Distance metric. We need to specify a distance met-
ric for the nearest neighbor. We use `2 distance in
the pixel space, which is a commonly used distance
metric; however, it may not provide much semantic
information, which is important in some cases. There-
fore, in the experiment, we also consider `2 distance
in the feature space. In the pixel space, we use the
original image as the input to the neural network. In
the feature space, we first train a neural network on
the training set (without the unseen class), and then
we use this network to extract the features of each
image in the training, testing, and OOD set (forming a
new training, testing and OOD set). Finally, we train
a fully connected multi-layer perceptron on the new
training set and evaluate the test and NCG accuracy
on the new testing and OOD set.

Adversarial Robustness. Let Bpx, rq denote a ball
of radius r ą 0 around x in a metric space (X, dist).
A classifier f is said to be robust at x with radius r
if for all x1 P Bpx, rq, we have fpx1q “ fpxq. Typi-
cally, we require classifiers to be robust at points x

that are drawn from the underlying data distribution.
Popular solutions for training robust classifiers are
adversarial training (AT) (Madry et al., 2017) and
TRADES (Zhang et al., 2019). These methods ensure
robustness by encouraging the network to be more lo-
cally Lipschitz (smooth) on a ball of radius r around
each training point, where r is usually small.

3 Nearest Category Generalization

We begin with experiments to test out whether neural
networks generalize to the nearest category.

Datasets. We experiment with four datasets:
MNIST (LeCun et al., 2010), CIFAR10 (Krizhevsky,
2009), CIFAR100 (Krizhevsky, 2009), and ImgNet100
(an ImgNet (Deng et al., 2009) subset with 100 classes1).
For MNIST and CIFAR10, there are 10 distinct classes;
for CIFAR100, we use the coarse labeling, which has
20 classes; for ImgNet100, there is 100 distinct classes.
For all four datasets, we consider 10 different unseen
category combinations for each dataset (i.e., MNIST-
wo0, ..., MNIST-wo9, CIFAR10-wo0, ..., CIFAR10-wo9,
CIFAR100-wo0, ..., ImgNet100-wo9), which gives us a
total of 40 dataset.

Results. We train neural networks on the training set
of these 40 datasets with a standard training method
(natural) and measure their NCG accuracies. We per-
form a chi-square test against the null hypothesis that
the distribution of the labels is uniform, which gives a
chance-level NCG accuracy. With the p-value smaller
than 0.01, all networks trained on these 40 datasets
have an NCG accuracy significantly higher than the
chance level. We repeat the experiment in the feature
space and observed similar results. In addition, we see
many of the networks trained in the feature space have
their NCG accuracies being higher than the networks
trained in the pixel space. Partial results are shown in
the “natural” row of Table 2, and the full table can be
found in Appendix B.1.

3.1 Adversarial robust networks

Adversarial robustness is another feature that human
possesses, and the machine learning models are still
trying to acquire this feature (Goodfellow et al., 2014).
Here, we investigate whether there is a connection
between the adversarial robustness and NCG property.

Training methods. We consider two of the most
commonly used methods for making networks robust
to adversarial examples: Adversarial Training (Madry
et al., 2017)(AT) and TRADES (Zhang et al., 2019)

1Following https://github.com/HobbitLong/CMC/
blob/master/imagenet100.txt

https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
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with perturbation distance metric set to the `2. For
TRADES, we use robustness radii r P t2, 4, 8u. We find
that the training process in AT becomes unstable at
larger values of r; hence we only use r “ 2 for AT. In
the feature space, we set r “ 1 for AT on CIFAR10
and CIFAR100, and r “ .5 for AT on ImgNet100 since
CIFAR10 and CIFAR100 failed to converge with r “ 2
and ImgNet100 failed to converge with r “ t2, 1u. We
denote TRADES with r “ 2 and AT with r “ 1 as
TRADES(2) and AT(1), respectively. Prior work has
observed that AT and TRADES provide roughly similar
results with proper parameter tuning (Yang et al., 2020;
Carmon et al., 2019), and hence we expect them to
behave similarly. Appendix A has more details for the
experimental setup.

Datasets. Since training adversarial robust networks
are time-consuming, we only use consider 3 datasets
from each of CIFAR10, CIFAR100, and ImgNet100 (we
still consider all 10 datasets for MNIST). CIFAR10,
we consider removing the airplane, deer, and truck
classes; for CIFAR100, we remove the aquatic mam-
mals, fruit and vegetables, and large man-made outdoor
things classes; for ImgNet100, we remove the Ameri-
can robin, Gila monster, and eastern hog-nosed snake
classes. These are denoted as CIFAR10-wo{0, 4, 9},
CIFAR100-wo{0, 4, 9}, ImgNet100-wo{0, 1, 2}.

Results. We measure the NCG accuracy of the models
trained on these datasets. Table 2 shows some typical
results, for full details, please refer to Appendix B.
As an aggregated result, we find that for all models
trained, both in pixel and feature space, we have a
higher than chance level NCG accuracy. In Table 3,
we show a comparison of the NCG accuracy between
robust models and naturally trained models. We see
that in most cases, TRADES and AT have a higher
NCG accuracy than natural training, thus showing that
robust models tend to predict images of the unseen class
with the same class as their nearest training example.
We emphasize that since the unseen class was absent
at training, this property has been obtained simply
by making the model adversarially robust and not by
optimizing for NCG accuracy.

Discussion. There are two particularly interesting
observations. First, we see that models in the feature
space generally have higher NCG accuracies than pixel
space. One plausible explanation is that the nearest
neighbor works better in the feature space. To sup-
port this, we measure the test accuracy of a 1-nearest
neighbor classifier in the feature space (Appendix B.1).
We find that in many cases, this test accuracy is very
close to the test accuracy of neural networks trained
in the feature space. This indicates that 1-nearest
neighbor works well with the feature space distance
metric, thus, we may get neural networks with higher

M-0 M-9 C10-0 C100-0 I-0

pixel

natural .39 .58 .35 .17 .03
TRADES(2) .46 .69 .49 .25 .04
TRADES(4) .48 .70 .52 .25 .05
TRADES(8) .40 .66 .48 .21 .07
AT(2) .46 .71 .49 .24 .04

feature

natural .28 .66 .80 .63 .11
TRADES(2) .39 .71 .81 .69 .15
TRADES(4) .45 .73 .83 .68 .12
TRADES(8) .58 .78 .83 .68 .13
AT(2)/(1)/(.5) .32 .70 .83 .70 .16

Table 2: NCG accuracy for different algorithms on
five datasets. M-0, M-9, C10-0, C100-0, I-0 mean
MNIST-wo0, MNIST-wo9, CIFAR10-wo0, CIFAR100-
wo0, ImageNet100-wo0 respectively. The chance level
is 1

9 for MNIST and CIFAR10, 1
19 for CIFAR100, and

1
99 for ImgNet100.

pixel feature
M C10 C100 I M C10 C100 I

TRADES(2) 10/10 3/3 3/3 3/3 9/10 2/3 3/3 3/3
TRADES(4) 8/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
TRADES(8) 7/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
AT(2)/(1)/(.5) 10/10 3/3 3/3 3/3 9/10 3/3 3/3 3/3

Table 3: The number of models that have a higher
NCG accuracy than the naturally trained model. For
MNIST, there are 10 different unseen classes, and for
CIFAR10, CIFAR100, and ImgNet100, there are 3
different unseen classes. 10/10 means that out of the
10 datasets with different unseen classes, all 10 models
have a higher NCG accuracy than the naturally trained
model.

NCG accuracies than in the pixel space. Second, we
observe that even within the same dataset, different
unseen classes can have very different NCG accuracy.
For example, the M-0 and M-9 datasets in the feature
space of Table 2 has .28 and .66 NCG accuracy for
naturally trained models. One plausible explanation
is that an image of 9 can be similar to images of 7s
or 1s, but an image of 0 is not particularly similar to
other digits. This suggests that NCG accuracies can be
significantly affected by the geometry of the dataset.

3.2 Robustness improves NCG

A natural question to ask is why robust models have
a higher NCG accuracy for unseen classes. One plau-
sible explanation is that the robust methods enforce
the neural network to be locally smooth in a ball of
radius r; if the OOD inputs are closer than r from
their nearest training example, then they would get
classified accordingly. Next, we test if this is the case
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by measuring the distances between the OOD inputs
and their closest training examples.

We again look at four datasets and four robust mod-
els. For each OOD x that is predicted with the same
label as its closest training example x̃, we calculate
the distance distpx, x̃q. Additionally, we calculate the
closest adversarial example to x̃ using various attack
algorithms and take the closest adversarial example
among them and denote it as x1. We measure the
OOD distances (distpx, x̃q) and empirical robust radius
(distpx1, x̃q) and then plot them in a histogram (Fig-
ure 3). Because some attack methods are computation-
intensive, we only compute the adversarial examples
for 300 randomly sampled correctly predicted training
examples and consider OOD examples with one of these
300 training examples as their closest neighbor.

Figure 3(a) reports typical distance histograms in the
pixel space (for CIFAR10-wo0); full result appears in
Appendix B.3. We find that the histograms of OOD
distances and the empirical robust radii have little to
no overlap in the pixel space, while in the feature space,
there are some overlaps but not much. To better under-
stand what is happening, we measure the percentage
of OOD examples that are covered in the ball centered
around the closest training example with a radius of
the empirical robust radius. We find that in both the
pixel and feature space, for 186 out of 190 models,
this percentage is less than 2%, which is significantly
smaller than the difference between the NCG accuracy
of robust and naturally trained models in most cases
(190 comes from having two metric spaces, five models,
and 19 datasets).

Discussion. This result shows that almost all OOD
examples are significantly further away from their clos-
est training example than the empirical robust radius
of these training examples. This indicates that this
property of adversarially robust models is not sim-
ply because the OOD inputs are close. Rather, even
though they were not directly trained to do so, the
robust models are generalizing better along unseen di-
rections on the natural image manifold than arbitrary
unseen directions.

(a) pixel space (b) feature space

Figure 3: Here, we show the histograms of the empirical
robust radius and log OOD distance for TRADES(2)
trained on CIFAR10-wo0.

3.3 When do we have higher NCG accuracy?

A child who has never seen an orange before may be
able to guess it is a tangerine. What if you show him
an image taken from the surface of the moon, which is
something completely out of his normal life, what might
have he guess this time? It appears to us that when
OOD examples are too far away from other training
examples, it may be hard for neural networks to predict
it as the label of the nearest training example.

To verify this hypothesis, we conduct the following
experiment. We bin the OOD examples based on their
distance to the closest training example into 5 equal
size bins, and we evaluate the NCG accuracy in each
bin. A typical result is shown in Figure 4 (more details
are in Appendix B.4). We find that the NCG accuracy
is generally higher when OOD examples are closer to
the training examples.

Discussion. An out-of-distribution detection algo-
rithm is a common approach for dealing with OOD
examples. However, Liang et al. (2018) point out that
OOD detection can perform poorly when in- and out-
of-distribution examples closer to each other. On the
other hand, in the same situation, our result shows
the networks follow NCG more strictly. The NCG
property can be seen as the network being “robust” in
terms of giving a reasonable output when the input is
OOD. In the future, one can use the NCG property of
neural networks to develop methods for tackling OOD
examples that are close to in-distribution examples.

(a) CIFAR10-wo0 (b) ImgNet100-wo0

Figure 4: The NCG accuracy and the distance to
the closest training example on CIFAR10-wo0 and
ImgNet100-wo0 in the pixel space. The distance metric
is in the pixel space, and the NCG accuracy is evalu-
ated on TRADES(2). Similar phenomenon can also be
found in the feature space (see Appendix B.4).

4 NCG with Corrupted Data

Does NCG apply to other kinds of OOD data besides
unseen classes? In this section, we look at the case
of corrupted data. We consider the corrupted data
generated by Hendrycks and Dietterich (2019) and
look at whether the NCG property holds on them. In
addition, we also look at what kinds of relationships
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there are between NCG, adversarial robustness, and
the robustness towards these corrupted data.

The corrupted datasets that we consider here in-
clude CIFAR10-C, CIFAR100-C, and ImgNet100-C,
which consists of corrupted images from the CIFAR-10,
CIFAR-100, and ImgNet100 datasets. These datasets
include images corrupted by effects such as Gaussian
noise, JPEG artifacts, etc. Figure 5 shows an example
and its corrupted counterpart from ImgNet100 and
ImgNet100-C. CIFAR10-C and CIFAR100-C each have
18 different kinds of corruption, and each kind has 5 cor-
ruption levels. For ImgNet, due to computational con-
straints, we subsample it to 100 classes and constructed
the ImgNet100-C dataset. ImgNet100-C has 15 kinds
of corruption, and each corruption has 5 corruption
levels. We consider models trained on regular datasets,
CIFAR10, CIFAR100, and ImgNet100 (instead of re-
moving the unseen class). For each corruption type
and intensity level pair, we call it a corrupted set. For
CIFAR10 and CIFAR100, there are 90 corrupted sets;
for ImgNet100, there are 75 corrupted sets.

(a) original (b) Gaussian (c) fog

Figure 5: The original image of an American robin and
images with two of the level 5 corruptions.

We want to verify whether the observations observed
in Section 3 still hold for corrupted data, which is a
different kind of OOD example. We evaluate the models
trained on CIFAR10, CIFAR100, and ImgNet100 on
each of the corrupted sets and measures their NCG
accuracy. In other words, each training method will be
measure on 255 different corruption sets.

Results. In both pixel and feature space, we find
that all the 255 corruption sets have an NCG accuracy
above chance level. For robust models, we see that in
the pixel space, all robust models (TRADES(2)) have
an NCG accuracy higher than naturally trained models.
In the feature space, in general, robust models still have
an NCG accuracy higher than the naturally trained
models, however, not by a lot (see Appendix B.5).

Discussion. These results demonstrate that our find-
ings in Section 3 extend to these corruptions as the
OOD data. We also see that in the feature space, the
robust models do not have much difference in NCG
accuracy from the naturally trained models. One hy-
pothesis is that there is no evidence showing that ad-

versarial robustness in the neural network feature space
is a feature that humans possess. Therefore, enforcing
smoothness (or robustness) in such space may not give
us much change over the NCG accuracy as did in the
pixel space.

4.1 NCG accuracy vs. test accuracy

The original design of the corrupted datasets is to
measure whether the models keep the same prediction
after the corruption, thus, they measure the test accu-
racy on corrupted data as a metric for robustness to
corruptions. We follow the same procedure as in the
previous section while also evaluate the test accuracy
on each of the corrupted sets. We say that an example
is NCG correct if the prediction on that example is
the same as the label of its closest training example
– i.e. consider correct under the NCG accuracy2. We
want to look at the interaction between the NCG and
test accuracies, so we also measure the test accuracy
on the NCG correct data and NCG incorrect data. In
Table 5, we show the result of Gaussian noise as the
corruption type with the model trained on CIFAR10,
CIFAR100, and ImgNet100. This is a typical result;
for other corruption types, please refer to Appendix B.
The major findings are in Section 4.1.1 and 4.1.2.

4.1.1 NCG correct examples are more likely
to be correctly classified

The first thing that we observed is that NCG correct
examples are more likely to be correctly classified. To
verify that this phenomenon is statistically significant
across the board, we perform the one-sided Welch’s
t-test (which does not assume equal variance) with
the null hypothesis being that the accuracy of NCG
correct example is not greater than the accuracy of
NCG incorrect example. We set the p-value threshold
to 0.05, and the test results are in Table 4. From
the result, we can say that majority of the time, this
phenomenon is significant.

pixel feature
C10 C100 I C10 C100 I

natural 87{90 87{90 57{75 88{90 90{90 73{75
TRADES(2) 84{90 88{90 60{75 89{90 90{90 73{75

Table 4: Number of cases where the NCG correct
examples have a significantly higher test accuracy
than the NCG incorrect examples. 87{90 means that
out of the 90 corrupted sets, 87 of them pass the t-test.

2Note that this is not obvious even in the feature space
as neural networks are performing linear classification in
the feature space instead of performing nearest neighbor
classification.
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model natural TRADES(2)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10
1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100
1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

I
1 0.42 0.41 0.68 0.04 0.36 0.35 0.51 0.06
3 0.22 0.21 0.49 0.03 0.34 0.33 0.49 0.05
5 0.04 0.04 0.07 0.02 0.22 0.22 0.34 0.04

feature

C10
1 0.74 0.39 0.78 0.89 0.72 0.32 0.77 0.89
3 0.45 0.33 0.48 0.82 0.40 0.19 0.45 0.83
5 0.34 0.28 0.35 0.82 0.31 0.18 0.33 0.83

C100
1 0.60 0.25 0.72 0.74 0.62 0.29 0.71 0.78
3 0.43 0.23 0.54 0.64 0.44 0.25 0.53 0.69
5 0.37 0.21 0.46 0.61 0.37 0.21 0.46 0.65

I
1 0.22 0.18 0.44 0.15 0.21 0.18 0.41 0.16
3 0.14 0.12 0.26 0.14 0.13 0.11 0.21 0.17
5 0.05 0.04 0.08 0.14 0.04 0.03 0.08 0.14

Table 5: Here, we show models trained on CIFAR10 and CIFAR100 and evaluate on the Gaussian noise corrupted
data. The NCG accuracy, test accuracy, the test accuracy on the NCG correct examples, the test accuracy on the
NCG incorrect examples. Here, we have corruption level 1, 3, and 5 (full table is in Appendix B.7).

(a) test accuracy (b) NCG accuracy

Figure 6: We show the test and NCG accuracies on
the model trained on CIFAR10 and evaluated with the
Gaussian noise corrupted data. From the figure, we
see that as the corruption level increases, the decrease
in both NCG and test accuracies are much slower for
robust models. In this example, the slope for test accu-
racy is ´0.44 and ´0.03 for natural and TRADES(2),
respectively; the slope for NCG accuracy is ´0.12 and
´0.02 for natural and TRADES(2), respectively. For
other kinds of corruption, please refer to Appendix B.6.

4.1.2 Robust training slows the decrease of
test accuracy with more corruption

In general, with the increase of the corruption level, the
NCG and test accuracies drop. However, with robust
models, this drop is slower comparing with naturally
trained models. For example, in Table 5 and the C10
row, the test accuracy for naturally trained model
drops from 0.76 to 0.36 while the test accuracy for
TRADES(2) only drops from 0.71 to 0.68. Similar
effects are found in NCG accuracy as well as other

datasets (C100 and I).

To evaluate this quantitatively, we calculate the slope
of the test and NCG accuracies from level 1 to 5 of each
corruption type with linear least-squares regression.
For example, for the naturally trained model on C10,
the slope of the test accuracy is the linear least-
squares regression trained on the following 5 points:
pp0., 0.76q, p0.25, 0.63q, p0.5, 0.48q, p0.75, 0.41q, p1.0, 0.36qq
(0.76, 0.48, and 0.36 corresponds to the test accuarcies
of the “C10” row and “natural” column in Table 20).
Figure 6 (a) shows the scatter plot and the regression
line for test accuracy on CIFAR10 with gaussian blur
as the corruption.

We can calculate the slope of this regression line for
both the robust and naturally trained models, and then
we compare these two slopes. In the pixel space, we
find that majority of the slopes for robust models are
smaller than the slope for naturally trained models. We
perform Welch’s t-test (p-value threshold set to 0.05)
with the null hypothesis being that the slope of a robust
model is less than the slope of a naturally trained model.
For CIFAR10 and CIFAR100, 15 and 14 (out of 18) of
the corruption types pass this test; for ImgNet100, 11
out of 15 corruption types pass the test However, things
in the features space tell a different story. We find that
the slopes here do not differ significantly between robust
and naturally trained models. We perform Welch’s t-
test with the null hypothesis being that the slopes of a
robust and a naturally trained model are different. We
find that for CIFAR10 and CIFAR100, 18 and 17 (out
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of 18) are not significant. For ImgNet100, all 15 out of
15 corruption types are not significantly. This result
resonates with some earlier observations, where we find
that in pixel space, the robust and naturally trained
models differ a lot in NCG accuracy, but in feature
space, this difference is much smaller. We see similar
phenomenon with NCG accuracy (see Appendix B.6).

4.2 Implications

The findings Section 4.1.1 and 4.1.2 show that different
forms of robustness, including adversarial robustness,
robustness to corruption, and the NCG, are intercon-
nected. Through analyzing the NCG property, we
may have a future direction for better understanding
the underlying mechanism of the interplay of differ-
ent robustness. All these three robustness properties
are related to some properties that humans possess,
and it seems enforcing adversarial robustness increases
the robustness of the other two robustness. There
are several interesting questions that are yet not an-
swered in this work and are good future directions.
What other distance metric does NCG also applies
to? Does enforcing NCG or robustness to corruption
increase adversarial robustness? Do these three forms
of robustness also have a similar connection with other
forms of robustness, such as the robustness to back-
ground changes Xiao et al. (2020) and sub-population
shift (Santurkar et al., 2020)? Does enforcing other
human-like behavior on neural networks increase the
“humanness” of the model?

Ablation study. In addition to the results presented
here, we also repeat the experiments with models
trained by other scholars and different architectures.
The results can be found in Appendix B.2, and these
results also have come to similar conclusions.

5 Related Work

Some prior works have looked at out-of-distribution
generalization benefits of adversarially robust neural
networks. For transfer learning, Salman et al. (2020)
and Utrera et al. (2020) report that when adapting
pre-trained models to new domains, using adversarially
trained models as the pre-trained models transfer bet-
ter than naturally trained ones. Shafahi et al. (2019)
show that robust models also have better adversarial
robustness after transferring to new domains. Dong
et al. (2020) and Huang et al. (2021) find that robust
language models transfer better to a different language.
In other related work, Stutz et al. (2019a) develop confi-
dence calibrated adversarial training to reject examples
with low confidence. All these works focus on trans-
ferring a robust pre-trained model to completely new
datasets and they evaluate test accuracy or adversarial

test accuracy. In contrast, we look at understanding
a different phenomenon – generalizing to nearby cate-
gories from a similar dataset.

Understanding adversarially robust generalization for
in-distribution inputs has also been the topic of some
study – particularly since most adversarially robust neu-
ral networks models suffer from a loss in test accuracy.
Rice et al. (2020) show that adversarial training can
overfit on in-distribution examples, leading to worse
test accuracy. Yang et al. (2020) suggest that the
robustness-accuracy tradeoff in neural networks may
be due to poor generalization, since common bench-
mark datasets have well-separated classes. Stutz et al.
(2019b) show that robustness on the in-distribution
data manifold leads to better generalization on the
in-distribution test examples. Our work expands on
this thread by showing that robust neural networks
resemble the nearest neighbor classifier in their gener-
alization behavior, which may have some connection to
their lack of accuracy on (in-distribution) test inputs.

Ford et al. (2019); Kang et al. (2019); Taori et al.
(2020) show that robust models often demonstrated
improved robustness to data corruptions, and Salman
et al. (2020); Utrera et al. (2020) show that robust
models transfer better to downstream tasks. However,
the underlying mechanism is not yet well understood.
The NCG can be seen as a form of robustness as it
provides a structure on the network’s outputs.

6 Conclusion

We examine out-of-distribution (OOD) properties of
neural networks and uncover intriguing generalization
properties. We show that neural networks have a ten-
dency of predicting OOD examples with the labels of
their closest training examples. We call this property
the nearest category generalization (NCG). We also
show that robust networks follow NCG more strictly
than naturally trained models. Through a thorough
empirical investigation, we posit that NCG happens
most likely due to the inductive bias of robust networks.
Next, we continue to examine whether NCG holds for a
set of different kinds of OOD examples, the corrupted
data. We not only find that NCG holds for corrupted
data, but also observe an interplay between adversarial
robustness, robustness to corruption, and NCG. We
show that these three seemingly disparate properties
are interconnected. A future direction would be to
explore this connection in more detail, either through
experiments or through a better theoretical understand-
ing of the inductive bias of robust networks. Another
direction is to further investigate the relationship be-
tween NCG and other generalization-related tasks such
as transfer learning or zero-shot learning.
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A Detailed experiment setups

The experiments are performed on 6 NVIDIA GeForce RTX 2080 Ti and 2 RTX 3080 GPUs located on three
servers. Two of the servers have Intel Core i9 9940X and 128GB of RAM and the other one has AMD Threadripper
3960X and 256GB of RAM. We compute nearest neighbors using FAISS3 (Johnson et al., 2017), and all neural
networks are implemented under the PyTorch framework4 (Paszke et al., 2019)

Algorithm implementations. For C&W algorithm (Carlini and Wagner, 2017), we use the implementation by
For TRADES (Zhang et al., 2019), we also use the implementation From the original author5.

Datasets. All datasets used in our paper can be found in publicly available urls. MNIST can be found in this
url6, CIFAR10 and CIFAR100 can be found in this url7, ImgNet can be found in this url8.

Architechtures. We consider the convolutional neural network (CNN)9, wider residual network (WRN-40-
10) (Zagoruyko and Komodakis, 2016), ResNet50 (He et al., 2016) for our experiments in the pixel space.

Optimizers. We consider stochastic gradient descent (SGD) and Adam (Kingma and Ba, 2014) as the optimizers.

MNIST setup. We use the CNN used by Zhang et al. (2019) for training neural networks in the pixel space.
The learning rate is decreased by a factor of 0.1 on the 40-th, 50-th, and 60-th epoch. We use the output of the
last convolutional CNN output as the extracted feature.

CIFAR10, CIFAR100, ImgNet100 setup. For CIFAR10 and CIFAR100, we use Wider ResNet (WRN-40-
10) (Zagoruyko and Komodakis, 2016) for training neural networks in the pixel space. For ImgNet100, we use
ResNet50 (He et al., 2016) for training neural networks in the pixel space. The learning rate is decreased by a
factor of 0.1 on the 40-th, 50-th, and 60-th epoch. For ImgNet100, we normalize the data by subtracting the
mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).

dataset MNIST CIFAR10 CIFAR100 ImgNet100

network structure CNN WRN-40-10 WRN-40-10 ResNet50
optimizer SGD Adam Adam Adam
batch size 128 64 64 128
momentum 0.9 - - -
epochs 70 70 70 70

initial learning rate 0.01 0.01 0.01 0.01
# train examples 60000 50000 50000 126689
# test examples 10000 10000 10000 5000

# classes 10 10 20 100

Table 6: Experimental setup for training in the pixel space. No weight decay is applied.

Adversarial attack algorithms. For the adversarial attack algorithms used to find the closest adversarial exam-
ples, we use a mixture of projected gradient descent (PGD) (Madry et al., 2017), Brendel Bethge attack (Brendel
et al., 2019), boundary attack (Brendel et al., 2017), multi-targeted attack (Kwon et al., 2018), Sign-Opt (Cheng
et al., 2019) and C&W algorithm (Carlini and Wagner, 2017).

A.0.1 Setups for experiments in the feature space

Architechtures. For MNIST, CIFAR10, and CIFAR100, we train a multi-layer-perceptron (MLP) with two
hidden layers each with 256 neurons and ReLU as the activation function in the feature space. For ImgNet100, we

3code and license can be found in https://github.com/facebookresearch/faiss
4code and license can be found in https://github.com/pytorch/pytorch
5code and license can be found in https://github.com/yaodongyu/TRADES
6http://yann.lecun.com/exdb/mnist/
7https://www.cs.toronto.edu/~kriz/cifar.html
8https://www.image-net.org/
9CNN is retrieved from the public repository of TRADES (Zhang et al., 2019) https://github.com/yaodongyu/

TRADES/blob/master/models/small_cnn.py

https://github.com/facebookresearch/faiss
https://github.com/pytorch/pytorch
https://github.com/yaodongyu/TRADES
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/
https://github.com/yaodongyu/TRADES/blob/master/models/small_cnn.py
https://github.com/yaodongyu/TRADES/blob/master/models/small_cnn.py
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train an MLP with two hidden layers each with 1024 neurons and ReLU as the activation function in the feature
space. For all four datasets, we use SGD as the optimizer with an initial learning rate of 0.01 and a momentum
of 0.9.

B Additional experiment results

B.1 NCG accuracies.

Table 7 shows the test accuracies of the 1-NN classifiers in the feature space of 12 different datasets. Table 8, 9,
10, and 11 extends Table 2 with all datasets. We see that the 1-NN classifiers are actually performing very well
(close) in the feature space.

M-0 M-4 M-9 C10-0 C10-4 C10-9 C100-0 C100-4 C100-9 I-0 I-1 I-2

0.99 0.99 0.99 0.89 0.88 0.88 0.73 0.73 0.71 0.14 0.14 0.14

Table 7: The test accuracy of a 1-nearest neighbor classifier in the feature space 12 different datasets.

natural AT(2) TRADES(2) TRADES(4) TRADES(8)

MNIST-wo0
train acc. 1.000 0.993 0.987 0.954 0.997
test acc. 0.995 0.990 0.985 0.956 0.995
NCG acc. 0.390 0.457 0.457 0.485 0.402

MNIST-wo1
train acc. 1.000 0.994 0.987 0.975 0.997
test acc. 0.995 0.991 0.987 0.974 0.994
NCG acc. 0.273 0.451 0.355 0.528 0.259

MNIST-wo2
train acc. 1.000 0.993 0.988 0.958 0.997
test acc. 0.994 0.990 0.987 0.962 0.994
NCG acc. 0.402 0.532 0.529 0.520 0.452

MNIST-wo3
train acc. 1.000 0.994 0.989 0.962 0.997
test acc. 0.995 0.992 0.988 0.964 0.994
NCG acc. 0.564 0.659 0.667 0.592 0.538

MNIST-wo4
train acc. 1.000 0.994 0.988 0.963 0.997
test acc. 0.995 0.991 0.987 0.966 0.995
NCG acc. 0.760 0.766 0.810 0.758 0.749

MNIST-wo5
train acc. 1.000 0.993 0.988 0.965 0.997
test acc. 0.995 0.990 0.987 0.965 0.995
NCG acc. 0.505 0.611 0.618 0.616 0.537

MNIST-wo6
train acc. 1.000 0.993 0.987 0.959 0.997
test acc. 0.995 0.991 0.987 0.962 0.995
NCG acc. 0.515 0.551 0.556 0.505 0.538

MNIST-wo7
train acc. 1.000 0.994 0.989 0.962 0.997
test acc. 0.995 0.992 0.990 0.967 0.994
NCG acc. 0.507 0.672 0.703 0.713 0.594

MNIST-wo8
train acc. 1.000 0.993 0.987 0.966 0.997
test acc. 0.994 0.990 0.987 0.966 0.995
NCG acc. 0.416 0.493 0.497 0.491 0.446

MNIST-wo9
train acc. 1.000 0.996 0.992 0.962 0.997
test acc. 0.996 0.994 0.992 0.964 0.995
NCG acc. 0.577 0.714 0.691 0.703 0.660

Table 8: The train, test, and NCG accuracies of 10 MNIST datasets and 5 training methods in the pixel space.
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natural AT(2) TRADES(2) TRADES(4) TRADES(8)

CIFAR10-wo0
train acc. 1.000 0.999 0.992 0.870 0.878
test acc. 0.898 0.729 0.716 0.660 0.761
NCG acc. 0.355 0.494 0.492 0.520 0.483

CIFAR10-wo4
train acc. 1.000 1.000 0.990 0.874 0.508
test acc. 0.886 0.754 0.742 0.700 0.485
NCG acc. 0.222 0.361 0.333 0.331 0.289

CIFAR10-wo9
train acc. 1.000 1.000 0.992 0.948 0.778
test acc. 0.885 0.725 0.712 0.732 0.641
NCG acc. 0.145 0.212 0.192 0.247 0.245

CIFAR100-wo0
train acc. 1.000 0.998 0.995 0.943 0.902
test acc. 0.741 0.554 0.547 0.576 0.607
NCG acc. 0.175 0.240 0.252 0.252 0.206

CIFAR100-wo4
train acc. 1.000 0.998 0.995 0.857 0.859
test acc. 0.743 0.544 0.543 0.492 0.553
NCG acc. 0.137 0.192 0.191 0.187 0.185

CIFAR100-wo9
train acc. 1.000 0.996 0.995 0.950 0.527
test acc. 0.727 0.547 0.537 0.585 0.431
NCG acc. 0.222 0.353 0.412 0.427 0.465

ImgNet100-wo0
train acc. 1.000 0.999 0.994 0.983 0.704
test acc. 0.529 0.417 0.393 0.354 0.320
NCG acc. 0.033 0.044 0.041 0.054 0.067

ImgNet100-wo1
train acc. 1.000 0.999 0.995 0.972 0.783
test acc. 0.534 0.414 0.385 0.356 0.316
NCG acc. 0.047 0.049 0.051 0.061 0.072

ImgNet100-wo2
train acc. 1.000 0.999 0.994 0.971 0.695
test acc. 0.537 0.394 0.388 0.353 0.320
NCG acc. 0.027 0.028 0.033 0.044 0.049

Table 9: The train, test, and NCG accuracies of 9 different variations of CIFAR10, CIFAR100, and ImgNet100
datasets and 5 training methods in the pixel space.

B.2 Ablation study

B.2.1 Different architectures

We repeat the experiment with a different network architecture – DenseNet161 (Huang et al., 2017). Their
training, testing, and NCG accuracies are shown in Table 12.

B.2.2 Pretrainde models

To verify that our observations can also be observed by models trained by others, we downloaded pretrained
models from https://github.com/MadryLab/robustness/tree/master/robustness by Engstrom et al. (2019).
Table 13 shows the training and testing accuarcies of their models.

Corrupted data. For models in the features space, we follow the same setup as in the feature space of CIFAR10,
which still trains a multi-layer perceptron on the CNN feature space, but in the feature space of the pretrained
model. Table 14 shows comparison of robust and naturally trained models. From the table, we can see that the
robust models in general have higher NCG accuracy than the naturally trained models when the robust radius
r is larger than 0.25. Table 15 shows the test accuracy, NCG accuracy and the test accuracy conditioned on
whether the example is considered correct under NCG accuracy (NCG correct or not).

https://github.com/MadryLab/robustness/tree/master/robustness
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natural AT(2) TRADES(2) TRADES(4) TRADES(8)

MNIST-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 0.99
NCG acc. 0.28 0.32 0.39 0.49 0.55

MNIST-wo1
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 0.99
NCG acc. 0.14 0.21 0.27 0.50 0.51

MNIST-wo2
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 1.00
NCG acc. 0.41 0.46 0.53 0.59 0.62

MNIST-wo3
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 0.99
NCG acc. 0.68 0.71 0.73 0.73 0.74

MNIST-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 1.00
NCG acc. 0.78 0.73 0.77 0.81 0.86

MNIST-wo5
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 1.00 1.00 0.99
NCG acc. 0.61 0.63 0.65 0.68 0.69

MNIST-wo6
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 1.00 1.00 1.00 1.00
NCG acc. 0.54 0.58 0.60 0.65 0.66

MNIST-wo7
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 1.00 1.00 1.00
NCG acc. 0.53 0.54 0.61 0.68 0.67

MNIST-wo8
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 0.99
NCG acc. 0.46 0.47 0.51 0.56 0.59

MNIST-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 1.00 1.00 1.00 1.00
NCG acc. 0.61 0.71 0.71 0.73 0.79

Table 10: The train, test, and NCG accuracies of 10 MNIST datasets and 5 training methods in the feature space.

B.3 Histograms of the empirical robust radius and OOD distance

Here we present the histogram of the empirical robust radius and OOD distance for other algorithms and datasets.
Figure 7, 8, and 9 show the results for MNIST, CIFAR10, CIFAR100, and ImgNet100 in the pixel space. Figure 10,
11, and 12 show the results for MNIST, CIFAR10, CIFAR100, and ImgNet100 in the feature space.

For the MNIST histograms in the feature space, we see that the empirical robust radius have smaller number
comparing with the counts for OOD distance. That is because there are many OOD examples that have these
few training examples as the closest training example.

Table 16, 17, 18, and 19 show the average empirical robust radius, average OOD distance, portion of OOD
examples covered by the robust norm ball of its closest training example and the NCG accuracy (in the pixel and
feature space of M, C10, C100, and I). From the table, we can see that the portion of OOD examples covered
by the robust norm ball of its closest training example are very low in general, regardless of the NCG accuracy.
This rejects that the hypothesis of that the robust methods enforce the neural network to be locally smooth in a
ball of radius r; if the OOD inputs are closer than r from their nearest training example, then they would get
classified accordingly. Next, we test if this is the case by measuring the distances between the OOD inputs and
their closest training examples.
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natural AT(.5)/(1) TRADES(2) TRADES(4) TRADES(8)

CIFAR10-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.89 0.89 0.89 0.90 0.90
NCG acc. 0.80 0.83 0.81 0.83 0.83

CIFAR10-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.88 0.88 0.88 0.89 0.88
NCG acc. 0.82 0.84 0.82 0.85 0.85

CIFAR10-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.88 0.88 0.88 0.89 0.89
NCG acc. 0.84 0.89 0.83 0.88 0.87

CIFAR100-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.72 0.73 0.73 0.74 0.74
NCG acc. 0.63 0.70 0.69 0.68 0.68

CIFAR100-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.72 0.73 0.73 0.74 0.74
NCG acc. 0.69 0.74 0.75 0.73 0.74

CIFAR100-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.70 0.72 0.72 0.73 0.73
NCG acc. 0.66 0.74 0.72 0.71 0.71

ImgNet100-wo0
train acc. 0.99 0.57 0.33 0.98 0.98
test acc. 0.22 0.25 0.26 0.26 0.26
NCG acc. 0.11 0.16 0.15 0.12 0.13

ImgNet100-wo1
train acc. 1.00 0.56 0.32 0.98 0.98
test acc. 0.22 0.24 0.27 0.26 0.25
NCG acc. 0.13 0.15 0.18 0.14 0.15

ImgNet100-wo2
train acc. 1.00 0.60 0.33 0.98 0.98
test acc. 0.22 0.25 0.26 0.26 0.26
NCG acc. 0.11 0.15 0.15 0.14 0.14

Table 11: The train, test, and NCG accuracies of 9 different variations of CIFAR10, CIFAR100, and ImgNet100
datasets and 5 training methods in the feature space. We use different radius for AT since not all converge well
when the radius is large (r “ 2) For CIFAR10 and CIFAR100, we use AT(1); for ImgNet100, we use AT(.5).

natural AT(2) TRADES(2)

CIFAR10-wo0
train acc. 1.000 0.781 0.876
test acc. 0.839 0.637 0.640
NCG acc. 0.342 0.487 0.521

CIFAR100-wo0
train acc. 1.000 0.886 0.557
test acc. 0.608 0.500 0.441
NCG acc. 0.173 0.225 0.271

Table 12: Results with DenseNet161 on CIFAR10 and CIFAR100.

B.4 Additional figures on NCG accuracy and the distance to the closest training example

Figure 13 and 14 shows the NCG accuracy and the distance to the closest training example for MNIST, CIFAR10,
and CIFAR100 in both pixel and feature space. We can see that, in general, the NCG accuracy is higher when in-
and out-of-distribution examples are closer to each other.

B.5 Additional results for corrupted data

Robust models on corrupted data. On average (over the 90 and 75 corrupted sets), robust models have
a NCG accuracy that is 1.35 ˘ .02, 1.36 ˘ .03, and 1.66 ˘ .04 times higher than naturally trained models for
CIFAR10, CIFAR100, and ImgNet100 respectively. In the feature space, we still find that all the 255 corruption
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natural AT(.25) AT(.5) AT(1.0)

trn acc. 1.00 0.97 0.98 0.86
tst acc. 0.95 0.93 0.91 0.82

Table 13: The training and testing accuracies of the Engstrom et al. (2019)’s pretrained models on CIFAR10.

robust > natural counts difference ratio

pixel

CIFAR10
AT(0.25) 51/90 0.00˘ 0.05 1.14˘ 0.04
AT(0.5) 86/90 0.14˘ 0.10 3.27˘ 0.55
AT(1.0) 88/90 0.18˘ 0.06 3.09˘ 0.22

feature

CIFAR10
AT(1.0) 70/90 0.00˘ 0.00 1.01˘ 0.00
TRADES(2) 55/90 0.00˘ 0.00 1.00˘ 0.00
TRADES(4) 52/90 0.00˘ 0.00 1.00˘ 0.00
TRADES(8) 55/90 0.00˘ 0.00 1.00˘ 0.00

Table 14: In both pixel and feature space, among the 90 corrupted sets for cifar10, the first columns shows the
number of robust models that have an NCG accuracy higher than naturally trained network. The second and
third column shows the average difference and ratio of the NCG accuracy of the robust models and naturally
trained networks (average over the NCG accuracies on the 90 corrupted sets).

model natural AT(1)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10

1 0.52 0.50 0.68 0.13 0.21 0.17 0.31 0.30
2 0.37 0.35 0.49 0.12 0.20 0.16 0.31 0.29
3 0.28 0.26 0.38 0.13 0.20 0.16 0.30 0.29
4 0.25 0.24 0.33 0.14 0.20 0.16 0.30 0.28
5 0.23 0.21 0.32 0.14 0.20 0.16 0.30 0.28

feature

C10

1 0.82 0.44 0.85 0.95 0.82 0.42 0.83 0.97
2 0.67 0.38 0.70 0.91 0.66 0.41 0.68 0.95
3 0.49 0.31 0.52 0.86 0.48 0.30 0.49 0.93
4 0.42 0.29 0.44 0.85 0.41 0.31 0.42 0.92
5 0.36 0.27 0.37 0.84 0.35 0.27 0.35 0.92

Table 15: The test accuracy, NCG accuracy, and the test accuracy conditioned on the NCG correctness of
Engstrom et al. (2019)’s pretrained model on the Gaussian noise corrupted data.

sets have an NCG accuracy above chance level, but the NCG accuracies of the robust models are closer to
the naturally trained models. For CIFAR100, we still observe that all robust models have an NCG accuracy
higher than the naturally trained models. But for CIFAR10, we find that on only 42 (out of 90) corrupted sets,
TRADES(2) models have a higher NCG accuracy than naturally trained models. The average improvement
over the naturally trained models in NCG accuracy goes down to 1.00˘ .00, 1.07˘ .00, and 1.09˘ .01 times for
CIFAR10, CIFAR100, and ImgNet100 respectively.
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(a) M-0, natural (b) M-1, natural (c) M-4, natural (d) M-9, natural

(e) M-0, TRADES(r=2) (f) M-1, TRADES(r=2) (g) M-4, TRADES(r=2) (h) M-9, TRADES(r=2)

(i) M-0, TRADES(r=4) (j) M-1, TRADES(r=4) (k) M-4, TRADES(r=4) (l) M-9, TRADES(r=4)

(m) M-0, TRADES(r=8) (n) M-1, TRADES(r=8) (o) M-4, TRADES(r=8) (p) M-9, TRADES(r=8)

(q) M-0, AT(r=2) (r) M-1, AT(r=2) (s) M-4, AT(r=2) (t) M-9, AT(r=2)

Figure 7: The histograms of the empirical robust radius and OOD distance for networks trained on MNIST-
wo0 (M-0), MNIST-wo1 (M-1), MNIST-wo4 (M-4), and MNIST-wo9 (M-9) in the pixel space.

B.6 Additional results on the slope of corrupted test accuracy

NCG accuracy. Repeating the same experiment with NCG accuracy, we find similar results as well. In the
pixel space, for CIFAR10 and CIFAR100, the slope of naturally trained models are significantly smaller than
TRADES(2) on 15 and 14 (out of 18) corruption types. For ImgNet100, 6 out of 15 corruption types pass the test.
The other 9 corruption types are not significant (they did not accept or reject the hypothesis). In the feature
space, we also test whether the slopes of robust and naturally trained models are different. For CIFAR10 and
CIFAR100, 17 and 15 (out of 18) corruption types, respectively, are not significantly different. For ImgNet100, 13
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(a) C10-0, natural (b) C10-4, natural (c) C100-0, natural (d) C100-4, natural

(e) C10-0, TRADES(r=2) (f) C10-4, TRADES(r=2) (g) C100-0, TRADES(r=2) (h) C100-4, TRADES(r=2)

(i) C10-0, TRADES(r=4) (j) C10-4, TRADES(r=4) (k) C100-0, TRADES(r=4) (l) C100-4, TRADES(r=4)

(m) C10-0, TRADES(r=8) (n) C10-4, TRADES(r=8) (o) C100-0, TRADES(r=8) (p) C100-4, TRADES(r=8)

(q) C10-0, AT(r=2) (r) C10-4, AT(r=2) (s) C100-0, AT(r=2) (t) C100-4, AT(r=2)

Figure 8: The histograms of the empirical robust radius and OOD distance for networks trained on CIFAR10-wo0
(C10-0), CIFAR10-wo4 (C10-4), CIFAR100-wo0 (C100-4), and CIFAR100-wo4 (C100-4) in the pixel space.

out of 15 corruption types are not significant. Figure 15 and 16, shows the slope of the corrupted test accuracy
for CIFAR10 and CIFAR100. Figure 17 and 18. shows the slope of the corrupted test accuracy for CIFAR10 and
CIFAR100.

B.7 Full table of Table 5

Table 20 shows the full version of Table 5. We can derive the same conclusion from this table.

We also show the tables of other corruption type from Table 22 to Table 87 in both pixel and feature space.
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(a) I-0, natural (b) I-1, natural (c) I-2, natural

(d) I-0, TRADES(r=2) (e) I-1, TRADES(r=2) (f) I-2, TRADES(r=2)

(g) I-0, TRADES(r=4) (h) I-1, TRADES(r=4) (i) I-2, TRADES(r=4)

(j) I-0, TRADES(r=8) (k) I-1, TRADES(r=8) (l) I-2, TRADES(r=8)

(m) I-0, AT(r=2) (n) I-1, AT(r=2) (o) I-2, AT(r=2)

Figure 9: The histograms of the empirical robust radius and OOD distance for networks trained on ImgNet100-
wo0(I-0), ImgNet100-wo0(I-1), and ImgNet100-wo0(I-2) in the pixel space.

B.8 Most predicted classes

In Table 21, we first remove a class from the training set of each dataset and train a neural network on the
modified trianing set. We then look at the predictions of the neural network on these removed images and record
their top two most predicted classes. From the result, we see that the outputs that these two networks produce
follow some patterns no matter it is in the pixel space or the feature space, robust training or not For example,
for C10-0 and C100-0, we see that “airplanes” are predicted as a ship or bird possibly because they have similar
background of the sky. “aquatic mammals” are predicted as fish possibly because they are both in the water.
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(a) M-0, natural (b) M-1, natural (c) M-4, natural (d) M-9, natural

(e) M-0, TRADES(r=2) (f) M-1, TRADES(r=2) (g) M-4, TRADES(r=2) (h) M-9, TRADES(r=2)

(i) M-0, TRADES(r=4) (j) M-1, TRADES(r=4) (k) M-4, TRADES(r=4) (l) M-9, TRADES(r=4)

(m) M-0, TRADES(r=8) (n) M-1, TRADES(r=8) (o) M-4, TRADES(r=8) (p) M-9, TRADES(r=8)

(q) M-0, AT(r=2) (r) M-1, AT(r=2) (s) M-4, AT(r=2) (t) M-9, AT(r=2)

Figure 10: The histograms of the empirical robust radius and OOD distance for networks trained on MNIST-wo0
(M-0), MNIST-wo1 (M-1), MNIST-wo4 (C100-4), and MNIST-wo9 (C100-9) in the feature space.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 34: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type elastic transform in the pixel space for naturally trained and robust models.



Yao-Yuan Yang, Cyrus Rashtchian, Ruslan Salakhutdinov, Kamalika Chaudhuri

(a) C10-0, natural (b) C10-4, natural (c) C100-0, natural (d) C100-4, natural

(e) C10-0, TRADES(r=2) (f) C10-4, TRADES(r=2) (g) C100-0, TRADES(r=2) (h) C100-4, TRADES(r=2)

(i) C10-0, TRADES(r=4) (j) C10-4, TRADES(r=4) (k) C100-0, TRADES(r=4) (l) C100-4, TRADES(r=4)

(m) C10-0, TRADES(r=8) (n) C10-4, TRADES(r=8) (o) C100-0, TRADES(r=8) (p) C100-4, TRADES(r=8)

(q) C10-0, AT(r=1) (r) C10-4, AT(r=1) (s) C100-0, AT(r=1) (t) C100-4, AT(r=1)

Figure 11: The histograms of the empirical robust radius and OOD distance for networks trained on CIFAR10-wo0
(C10-0), CIFAR10-wo4 (C10-4), CIFAR100-wo0 (C100-4), and CIFAR100-wo4 (C100-4) in the feature space.
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(a) I-0, natural (b) I-1, natural (c) I-2, natural

(d) I-0, TRADES(r=2) (e) I-1, TRADES(r=2) (f) I-2, TRADES(r=2)

(g) I-0, TRADES(r=4) (h) I-1, TRADES(r=4) (i) I-2, TRADES(r=4)

(j) I-0, TRADES(r=8) (k) I-1, TRADES(r=8) (l) I-2, TRADES(r=8)

(m) I-0, AT(r=.5) (n) I-1, AT(r=.5) (o) I-2, AT(r=.5)

Figure 12: The histograms of the empirical robust radius and OOD distance for networks trained on ImgNet100-
wo0(I-0), ImgNet100-wo0(I-1), and ImgNet100-wo0(I-2) in the feature space.
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empirical
robust
radius

OOD dist. portion
covered NCG acc.

M-0

AT(2) 2.33 7.00 0.00 0.46
TRADES(2) 2.17 6.98 0.00 0.46
TRADES(4) 2.07 6.94 0.00 0.48
TRADES(8) 0.68 6.97 0.00 0.42
natural 1.26 6.95 0.00 0.36

M-1

AT(2) 1.83 4.30 0.00 0.51
TRADES(2) 1.57 4.31 0.00 0.35
TRADES(4) 1.44 4.31 0.00 0.54
TRADES(8) 0.56 4.29 0.00 0.28
natural 0.89 4.33 0.00 0.23

M-2

AT(2) 2.27 6.92 0.00 0.54
TRADES(2) 2.15 6.93 0.00 0.53
TRADES(4) 2.23 6.86 0.00 0.52
TRADES(8) 0.71 7.03 0.00 0.47
natural 1.33 6.98 0.00 0.40

M-3

AT(2) 2.35 6.27 0.00 0.66
TRADES(2) 2.22 6.33 0.00 0.66
TRADES(4) 1.93 6.30 0.00 0.58
TRADES(8) 0.70 6.20 0.01 0.55
natural 1.52 6.34 0.00 0.59

M-4

AT(2) 2.34 5.64 0.00 0.74
TRADES(2) 2.32 5.89 0.00 0.81
TRADES(4) 1.84 5.65 0.00 0.76
TRADES(8) 0.66 5.83 0.00 0.75
natural 1.33 5.73 0.00 0.76

M-5

AT(2) 2.39 6.30 0.00 0.61
TRADES(2) 2.17 6.34 0.00 0.62
TRADES(4) 2.24 6.37 0.00 0.62
TRADES(8) 0.66 6.33 0.00 0.55
natural 1.39 6.34 0.00 0.53

M-6

AT(2) 2.41 6.46 0.00 0.55
TRADES(2) 2.18 6.45 0.00 0.56
TRADES(4) 2.06 6.52 0.00 0.49
TRADES(8) 0.58 6.46 0.00 0.53
natural 1.30 6.44 0.00 0.51

M-7

AT(2) 2.18 5.55 0.00 0.67
TRADES(2) 2.10 5.47 0.00 0.72
TRADES(4) 1.88 5.51 0.01 0.72
TRADES(8) 0.77 5.53 0.01 0.59
natural 1.27 5.51 0.00 0.53

M-8

AT(2) 2.22 6.32 0.00 0.49
TRADES(2) 1.99 6.30 0.00 0.51
TRADES(4) 1.92 6.35 0.00 0.47
TRADES(8) 0.63 6.30 0.00 0.45
natural 1.35 6.30 0.00 0.42

M-9

AT(2) 2.33 5.14 0.00 0.71
TRADES(2) 2.28 5.25 0.00 0.68
TRADES(4) 2.18 5.13 0.00 0.70
TRADES(8) 0.66 5.20 0.00 0.65
natural 1.45 5.08 0.00 0.58

Table 16: The average empirical robust radius, average OOD distance, percentage of OOD examples covered
by the robust norm ball of its closest training example and the NCG accuracy (in the pixel space of MNIST
datasets).
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empirical
robust
radius

OOD dist. portion
covered NCG acc.

C10-0

AT(2) 2.14 8.67 0.00 0.49
TRADES(2) 2.17 8.89 0.00 0.49
TRADES(4) 1.62 9.13 0.00 0.52
TRADES(8) 0.51 8.67 0.00 0.48
natural 0.09 8.71 0.00 0.35

C10-4

AT(2) 1.92 8.04 0.00 0.36
TRADES(2) 1.75 8.29 0.00 0.33
TRADES(4) 0.93 8.30 0.00 0.33
TRADES(8) 0.87 8.16 0.00 0.29
natural 0.09 8.29 0.00 0.22

C10-9

AT(2) 2.11 10.80 0.00 0.21
TRADES(2) 2.01 11.05 0.00 0.19
TRADES(4) 0.92 10.83 0.00 0.25
TRADES(8) 0.65 10.83 0.00 0.25
natural 0.12 10.85 0.00 0.14

C100-0

AT(2) 1.96 8.89 0.00 0.24
TRADES(2) 1.93 9.03 0.00 0.25
TRADES(4) 0.82 9.01 0.00 0.25
TRADES(8) 0.59 9.10 0.00 0.21
natural 0.11 8.94 0.00 0.17

C100-4

AT(2) 2.01 10.43 0.00 0.19
TRADES(2) 2.21 10.53 0.00 0.19
TRADES(4) 1.12 10.57 0.00 0.19
TRADES(8) 0.41 10.36 0.00 0.18
natural 0.10 10.17 0.00 0.14

C100-9

AT(2) 2.10 9.18 0.00 0.35
TRADES(2) 2.18 9.57 0.00 0.41
TRADES(4) 0.86 9.27 0.00 0.43
TRADES(8) 1.49 9.01 0.00 0.47
natural 0.08 9.22 0.00 0.22

I-0

AT(2) 2.77 155.07 0.00 0.04
TRADES(2) 3.14 155.62 0.00 0.04
TRADES(4) 3.54 160.05 0.00 0.06
TRADES(8) 2.67 161.10 0.00 0.07
natural 0.29 157.42 0.00 0.03

I-1

AT(2) 2.72 153.03 0.00 0.05
TRADES(2) 2.85 155.91 0.00 0.05
TRADES(4) 2.92 156.97 0.00 0.06
TRADES(8) 2.32 157.91 0.00 0.07
natural 0.26 152.47 0.00 0.05

I-2

AT(2) 2.22 154.28 0.00 0.03
TRADES(2) 2.49 155.76 0.00 0.03
TRADES(4) 2.67 156.83 0.00 0.04
TRADES(8) 2.27 156.27 0.00 0.05
natural 0.15 154.16 0.00 0.03

Table 17: The average empirical robust radius, average OOD distance, percentage of OOD examples covered by
the robust norm ball of its closest training example and the NCG accuracy (in the pixel space of C10, C100, and
I).
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empirical
robust
radius

OOD dist. portion
covered NCG acc.

M-0

AT(2) 7.50 57.78 0.00 0.32
TRADES(2) 9.08 57.16 0.00 0.39
TRADES(4) 12.54 57.28 0.00 0.49
TRADES(8) 15.91 57.50 0.00 0.55
natural 5.84 57.78 0.00 0.28

M-1

AT(2) 6.12 37.06 0.00 0.20
TRADES(2) 7.69 37.02 0.00 0.26
TRADES(4) 10.51 37.01 0.00 0.51
TRADES(8) 13.68 36.87 0.00 0.50
natural 4.80 37.06 0.00 0.13

M-2

AT(2) 13.13 64.51 0.00 0.46
TRADES(2) 10.77 63.96 0.00 0.53
TRADES(4) 14.25 62.53 0.00 0.59
TRADES(8) 17.60 64.77 0.00 0.62
natural 7.25 62.41 0.00 0.41

M-3

AT(2) 15.55 70.11 0.00 0.71
TRADES(2) 13.34 70.09 0.00 0.73
TRADES(4) 17.64 70.68 0.00 0.73
TRADES(8) 21.42 69.82 0.00 0.74
natural 9.33 70.11 0.00 0.68

M-4

AT(2) 10.97 54.27 0.00 0.73
TRADES(2) 13.43 53.89 0.00 0.77
TRADES(4) 16.79 54.23 0.00 0.81
TRADES(8) 20.62 53.80 0.00 0.86
natural 9.74 54.27 0.00 0.78

M-5

AT(2) 14.92 65.51 0.00 0.63
TRADES(2) 12.25 65.25 0.00 0.65
TRADES(4) 15.50 64.37 0.00 0.68
TRADES(8) 19.64 65.12 0.00 0.69
natural 9.47 65.51 0.00 0.61

M-6

AT(2) 11.66 60.66 0.00 0.58
TRADES(2) 10.62 60.65 0.00 0.60
TRADES(4) 14.15 60.67 0.00 0.65
TRADES(8) 17.44 60.28 0.00 0.66
natural 7.42 60.66 0.00 0.54

M-7

AT(2) 12.03 51.40 0.00 0.54
TRADES(2) 10.80 52.75 0.00 0.61
TRADES(4) 14.09 51.78 0.00 0.68
TRADES(8) 19.22 52.96 0.00 0.67
natural 7.49 51.40 0.00 0.53

M-8

AT(2) 11.88 60.31 0.00 0.47
TRADES(2) 10.88 60.31 0.00 0.51
TRADES(4) 15.79 61.43 0.00 0.56
TRADES(8) 17.15 59.64 0.00 0.59
natural 7.43 60.31 0.00 0.46

M-9

AT(2) 11.28 51.54 0.00 0.71
TRADES(2) 13.13 52.28 0.00 0.71
TRADES(4) 16.99 50.70 0.00 0.74
TRADES(8) 20.84 51.48 0.00 0.80
natural 8.12 52.32 0.00 0.61

Table 18: The average empirical robust radius, average OOD distance, percentage of OOD examples covered
by the robust norm ball of its closest training example and the NCG accuracy (in the feature space of MNIST
datasets).
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empirical
robust
radius

OOD dist. portion
covered NCG acc.

C10-0

AT(1) 0.65 1.33 0.01 0.83
TRADES(2) 0.62 1.33 0.01 0.81
TRADES(4) 0.27 1.31 0.00 0.83
TRADES(8) 0.43 1.31 0.00 0.83
natural 0.48 1.31 0.00 0.80

C10-4

AT(1) 0.69 1.31 0.01 0.84
TRADES(2) 0.68 1.29 0.01 0.82
TRADES(4) 0.28 1.31 0.00 0.85
TRADES(8) 0.45 1.31 0.00 0.85
natural 0.57 1.31 0.00 0.82

C10-9

AT(1) 0.93 1.43 0.07 0.89
TRADES(2) 0.85 1.46 0.06 0.83
TRADES(4) 0.30 1.43 0.00 0.88
TRADES(8) 0.60 1.43 0.00 0.87
natural 0.73 1.43 0.03 0.84

C100-0

AT(1) 0.51 1.64 0.00 0.70
TRADES(2) 0.45 1.64 0.00 0.69
TRADES(4) 0.29 1.65 0.00 0.68
TRADES(8) 0.35 1.65 0.00 0.68
natural 0.30 1.65 0.00 0.63

C100-4

AT(1) 0.64 1.84 0.00 0.74
TRADES(2) 0.55 1.83 0.00 0.75
TRADES(4) 0.31 1.83 0.00 0.73
TRADES(8) 0.45 1.83 0.00 0.74
natural 0.36 1.83 0.00 0.69

C100-9

AT(1) 0.63 1.75 0.02 0.74
TRADES(2) 0.52 1.75 0.00 0.72
TRADES(4) 0.36 1.73 0.00 0.71
TRADES(8) 0.45 1.73 0.00 0.71
natural 0.33 1.73 0.00 0.66

I-0

AT(.5) 0.32 1.78 0.00 0.16
TRADES(2) 0.20 1.63 0.00 0.15
TRADES(4) 0.12 1.66 0.00 0.12
TRADES(8) 0.39 1.64 0.00 0.13
natural 0.07 1.64 0.00 0.11

I-1

AT(.5) 0.23 1.65 0.00 0.15
TRADES(2) 0.18 1.50 0.00 0.18
TRADES(4) 0.14 1.51 0.00 0.14
TRADES(8) 0.34 1.49 0.00 0.15
natural 0.05 1.47 0.00 0.13

I-2

AT(.5) 0.21 1.67 0.01 0.15
TRADES(2) 0.22 1.57 0.00 0.15
TRADES(4) 0.11 1.57 0.00 0.14
TRADES(8) 0.12 1.56 0.00 0.14
natural 0.06 1.58 0.00 0.11

Table 19: The average empirical robust radius, average OOD distance, percentage of OOD examples covered by
the robust norm ball of its closest training example and the NCG accuracy (in the feature space of C10, C100,
and I).
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(a) M-0 (b) M-4 (c) M-9

(d) C10-0 (e) C10-4 (f) C10-9

(g) C100-0 (h) C100-4 (i) C100-9

(j) I-0 (k) I-1 (l) I-2

Figure 13: The NCG accuracy and the distance to the closest training example for MNIST, CIFAR10, CIFAR100,
and ImageNet-100 in the pixel space.
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(a) M-0 (b) M-4 (c) M-9

(d) C10-0 (e) C10-4 (f) C10-9

(g) C100-0 (h) C100-4 (i) C100-9

(j) I-0 (k) I-1 (l) I-2

Figure 14: The NCG accuracy and the distance to the closest training example for MNIST, CIFAR10, CIFAR100,
and ImageNet-100 in the feature space.
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(a) C10 brightness (b) C10 contrast (c) C10 defocus (d) C10 elastic transform

(e) C10 fog (f) C10 Gaussian noise (g) C10 Gaussian blue (h) C10 glass

(i) C10 impulse (j) C10 jpeg (k) C10 motion (l) C10 pixelate

(m) C10 saturate (n) C10 shot (o) C10 snow (p) C10 spatter

(q) C10 speckle (r) C10 zoom

Figure 15: The slopes of the test accuracy of naturally trained models and TRADES(2) on CIFAR10 in the pixel
space.
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(a) C100 brightness (b) C100 contrast (c) C100 defocus (d) C100 elastic transform

(e) C100 fog (f) C100 Gaussian noise (g) C100 Gaussian blue (h) C100 glass

(i) C100 impulse (j) C100 jpeg (k) C100 motion (l) C100 pixelate

(m) C100 saturate (n) C100 shot (o) C100 snow (p) C100 spatter

(q) C100 speckle (r) C100 zoom

Figure 16: The slopes of the test accuracy of naturally trained models and TRADES(2) on CIFAR100 in the
pixel space.
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(a) C10 brightness (b) C10 contrast (c) C10 defocus (d) C10 elastic transform

(e) C10 fog (f) C10 Gaussian noise (g) C10 Gaussian blur (h) C10 glass

(i) C10 impulse (j) C10 jpeg (k) C10 motion (l) C10 pixelate

(m) C10 saturate (n) C10 shot (o) C10 snow (p) C10 spatter

(q) C10 speckle (r) C10 zoom

Figure 17: The slopes of the NCG accuracy of naturally trained models and TRADES(2) on CIFAR10 in the
pixel space.
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(a) C100 brightness (b) C100 contrast (c) C100 defocus (d) C100 elastic transform

(e) C100 fog (f) C100 Gaussian noise (g) C100 Gaussian blur (h) C100 glass

(i) C100 impulse (j) C100 jpeg (k) C100 motion (l) C100 pixelate

(m) C100 saturate (n) C100 shot (o) C100 snow (p) C100 spatter

(q) C100 speckle (r) C100 zoom

Figure 18: The slopes of the NCG accuracy of naturally trained models and TRADES(2) on CIFAR100 in the
pixel space.
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model natural TRADES(2)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

I

1 0.42 0.41 0.68 0.04 0.36 0.35 0.51 0.06
2 0.34 0.33 0.64 0.03 0.36 0.35 0.53 0.05
3 0.22 0.21 0.49 0.03 0.34 0.33 0.49 0.05
4 0.12 0.11 0.24 0.02 0.30 0.30 0.45 0.05
5 0.04 0.04 0.07 0.02 0.22 0.22 0.34 0.04

feature

C10

1 0.74 0.39 0.78 0.89 0.72 0.32 0.77 0.89
2 0.59 0.35 0.64 0.85 0.56 0.23 0.62 0.85
3 0.45 0.33 0.48 0.82 0.40 0.19 0.45 0.83
4 0.39 0.33 0.40 0.81 0.35 0.20 0.38 0.83
5 0.34 0.28 0.35 0.82 0.31 0.18 0.33 0.83

C100

1 0.60 0.25 0.72 0.74 0.62 0.29 0.71 0.78
2 0.51 0.24 0.63 0.68 0.53 0.29 0.62 0.74
3 0.43 0.23 0.54 0.64 0.44 0.25 0.53 0.69
4 0.40 0.22 0.51 0.63 0.40 0.23 0.49 0.67
5 0.37 0.21 0.46 0.61 0.37 0.21 0.46 0.65

I

1 0.22 0.18 0.44 0.15 0.21 0.18 0.41 0.16
2 0.19 0.16 0.36 0.14 0.18 0.15 0.34 0.15
3 0.14 0.12 0.26 0.14 0.13 0.11 0.21 0.17
4 0.09 0.08 0.16 0.13 0.08 0.07 0.14 0.16
5 0.05 0.04 0.08 0.14 0.04 0.03 0.08 0.14

Table 20: Here we show models trained on CIFAR10 and CIFAR100 and evaluate them on the gaussian noise
corrupted data. The NCG accuracy, test accuracy, the test accuracy on the NCG correct corrupted examples, the
test accuracy on the NCG incorrect corrupted examples, and the distance to the closest training example.
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unseen class top most
predicted class

second most
predicted class

M-0
pixel natural 0 6 2

TRADES(2) 0 2 6

feature natural 0 6 2
TRADES(2) 0 6 2

M-4
pixel natural 4 9 7

TRADES(2) 4 9 7

feature natural 4 9 7
TRADES(2) 4 9 7

M-9
pixel natural 9 4 7

TRADES(2) 9 4 7

feature natural 9 4 8
TRADES(2) 9 4 8

C100-0
pixel natural aquatic mammals fish small mammals

TRADES(2) aquatic mammals fish medium-sized mammals

feature natural aquatic mammals fish reptiles
TRADES(2) aquatic mammals fish reptiles

C100-4
pixel natural fruit and vegetables flowers food containers

TRADES(2) fruit and vegetables flowers food containers

feature natural fruit and vegetables flowers food containers
TRADES(2) fruit and vegetables flowers food containers

C100-9
pixel natural large man-made

outdoor things
large natural
outdoor scenes vehicles 2

TRADES(2) large man-made
outdoor things

large natural
outdoor scenes trees

feature natural large man-made
outdoor things

large natural
outdoor scenes vehicles 2

TRADES(2) large man-made
outdoor things

large natural
outdoor scenes vehicles 2

C10-0
pixel natural airplane ship bird

TRADES(2) airplane ship bird

feature natural airplane ship bird
TRADES(2) airplane ship bird

C10-4
pixel natural deer bird horse

TRADES(2) deer frog bird

feature natural deer bird horse
TRADES(2) deer bird cat

C10-9
pixel natural truck automobile airplane

TRADES(2) truck automobile ship

feature natural truck automobile ship
TRADES(2) truck automobile ship

I-0
pixel natural American robin lorikeet stinkhorn mushroom

TRADES(2) American robin lorikeet hare

feature natural American robin hare little blue heron
TRADES(2) American robin hare little blue heron

I-1
pixel natural Gila monster eastern hog-nosed

snake dung beetle

TRADES(2) Gila monster eastern hog-nosed
snake rock crab

feature natural Gila monster eastern hog-nosed
snake dung beetle

TRADES(2) Gila monster eastern hog-nosed
snake dung beetle

I-2
pixel natural eastern hog-nosed

snake garter snake Gila monster

TRADES(2) eastern hog-nosed
snake garter snake Gila monster

feature natural eastern hog-nosed
snake Gila monster garter snake

TRADES(2) eastern hog-nosed
snake Gila monster dung beetle

Table 21: This table shows the top and second most predicted classes on the examples of unseen classes for each
dataset.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 22: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 23: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type impulse in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 24: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type shot in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 25: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type defocus in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 26: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type motion in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 27: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type zoom in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 28: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type glass in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 29: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type snow in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 30: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type fog in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 31: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type contrast in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 32: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type pixelate in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 33: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type brightness in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 35: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian blur in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 36: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type jpeg compression in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 37: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type saturate in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 38: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type spatter in the pixel space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

Table 39: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type speckle noise in the pixel space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.74 0.39 0.78 0.89 0.72 0.32 0.77 0.89
2 0.59 0.35 0.64 0.85 0.56 0.23 0.62 0.85
3 0.45 0.33 0.48 0.82 0.40 0.19 0.45 0.83
4 0.39 0.33 0.40 0.81 0.35 0.20 0.38 0.83
5 0.34 0.28 0.35 0.82 0.31 0.18 0.33 0.83

C100

1 0.60 0.25 0.72 0.74 0.62 0.29 0.71 0.78
2 0.51 0.24 0.63 0.68 0.53 0.29 0.62 0.74
3 0.43 0.23 0.54 0.64 0.44 0.25 0.53 0.69
4 0.40 0.22 0.51 0.63 0.40 0.23 0.49 0.67
5 0.37 0.21 0.46 0.61 0.37 0.21 0.46 0.65

Table 40: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.80 0.36 0.84 0.92 0.80 0.32 0.84 0.92
2 0.72 0.35 0.77 0.89 0.71 0.31 0.76 0.89
3 0.65 0.34 0.70 0.86 0.62 0.27 0.68 0.85
4 0.47 0.36 0.50 0.80 0.42 0.23 0.48 0.79
5 0.32 0.34 0.31 0.80 0.27 0.20 0.29 0.79

C100

1 0.63 0.26 0.75 0.76 0.65 0.29 0.73 0.80
2 0.54 0.25 0.66 0.69 0.56 0.29 0.65 0.74
3 0.46 0.22 0.59 0.65 0.47 0.25 0.57 0.71
4 0.35 0.20 0.45 0.59 0.35 0.21 0.44 0.63
5 0.28 0.19 0.34 0.56 0.27 0.17 0.34 0.57

Table 41: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type impulse in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.80 0.38 0.84 0.91 0.80 0.34 0.84 0.91
2 0.72 0.35 0.77 0.88 0.71 0.30 0.76 0.88
3 0.55 0.33 0.59 0.83 0.51 0.22 0.56 0.84
4 0.47 0.30 0.51 0.83 0.43 0.19 0.48 0.83
5 0.38 0.30 0.39 0.81 0.33 0.17 0.36 0.83

C100

1 0.65 0.27 0.76 0.77 0.67 0.31 0.75 0.81
2 0.59 0.26 0.71 0.75 0.61 0.30 0.70 0.78
3 0.49 0.24 0.61 0.68 0.50 0.26 0.59 0.73
4 0.45 0.23 0.56 0.66 0.46 0.25 0.54 0.70
5 0.39 0.21 0.49 0.63 0.39 0.22 0.48 0.66

Table 42: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type shot in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.89 0.41 0.91 0.95 0.88 0.37 0.91 0.95
2 0.86 0.39 0.90 0.94 0.85 0.31 0.89 0.94
3 0.80 0.41 0.83 0.92 0.77 0.27 0.82 0.90
4 0.67 0.44 0.71 0.85 0.61 0.25 0.68 0.85
5 0.49 0.42 0.51 0.77 0.42 0.24 0.47 0.79

C100

1 0.71 0.29 0.80 0.81 0.72 0.33 0.79 0.85
2 0.68 0.28 0.78 0.80 0.69 0.31 0.76 0.83
3 0.62 0.27 0.73 0.77 0.63 0.28 0.71 0.81
4 0.55 0.29 0.65 0.72 0.54 0.26 0.62 0.77
5 0.46 0.27 0.55 0.67 0.44 0.24 0.51 0.73

Table 43: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type defocus in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.81 0.39 0.85 0.92 0.78 0.24 0.84 0.90
2 0.71 0.39 0.75 0.87 0.65 0.20 0.72 0.86
3 0.61 0.43 0.65 0.83 0.54 0.21 0.61 0.82
4 0.61 0.42 0.65 0.83 0.54 0.19 0.61 0.82
5 0.54 0.45 0.56 0.80 0.45 0.21 0.51 0.80

C100

1 0.64 0.30 0.75 0.77 0.65 0.30 0.73 0.81
2 0.58 0.29 0.69 0.73 0.58 0.28 0.66 0.78
3 0.53 0.28 0.64 0.70 0.51 0.25 0.59 0.76
4 0.53 0.29 0.63 0.69 0.51 0.26 0.59 0.76
5 0.48 0.28 0.58 0.67 0.45 0.24 0.53 0.74

Table 44: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type motion in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.76 0.38 0.81 0.89 0.73 0.24 0.80 0.88
2 0.72 0.38 0.77 0.86 0.68 0.24 0.75 0.86
3 0.64 0.38 0.70 0.82 0.59 0.22 0.66 0.83
4 0.57 0.39 0.62 0.79 0.51 0.21 0.58 0.81
5 0.47 0.33 0.51 0.75 0.41 0.20 0.46 0.79

C100

1 0.62 0.29 0.72 0.77 0.62 0.29 0.70 0.80
2 0.60 0.28 0.71 0.74 0.59 0.28 0.68 0.79
3 0.56 0.28 0.67 0.72 0.55 0.26 0.64 0.77
4 0.53 0.28 0.63 0.70 0.51 0.25 0.60 0.75
5 0.49 0.28 0.59 0.67 0.46 0.24 0.55 0.73

Table 45: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type zoom in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.44 0.27 0.48 0.80 0.42 0.22 0.47 0.81
2 0.46 0.29 0.50 0.81 0.44 0.23 0.49 0.81
3 0.48 0.27 0.53 0.81 0.46 0.22 0.52 0.81
4 0.36 0.23 0.40 0.79 0.35 0.20 0.39 0.80
5 0.38 0.22 0.42 0.79 0.37 0.22 0.41 0.80

C100

1 0.42 0.21 0.53 0.67 0.44 0.24 0.51 0.73
2 0.43 0.20 0.55 0.67 0.45 0.24 0.53 0.73
3 0.45 0.20 0.56 0.68 0.48 0.28 0.55 0.73
4 0.33 0.18 0.41 0.63 0.33 0.20 0.39 0.71
5 0.35 0.17 0.45 0.64 0.37 0.22 0.43 0.71

Table 46: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type glass in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.81 0.38 0.85 0.92 0.80 0.34 0.84 0.92
2 0.68 0.41 0.73 0.86 0.65 0.28 0.70 0.86
3 0.72 0.39 0.77 0.87 0.70 0.30 0.75 0.88
4 0.70 0.40 0.74 0.86 0.67 0.27 0.73 0.87
5 0.65 0.40 0.70 0.85 0.62 0.27 0.68 0.86

C100

1 0.64 0.27 0.75 0.77 0.65 0.31 0.73 0.81
2 0.54 0.26 0.65 0.71 0.55 0.28 0.63 0.76
3 0.54 0.23 0.66 0.72 0.56 0.27 0.65 0.77
4 0.52 0.23 0.64 0.71 0.54 0.26 0.62 0.76
5 0.48 0.24 0.59 0.68 0.49 0.27 0.57 0.73

Table 47: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type snow in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.88 0.41 0.91 0.95 0.88 0.33 0.90 0.95
2 0.87 0.40 0.90 0.93 0.85 0.29 0.89 0.94
3 0.84 0.41 0.88 0.93 0.82 0.26 0.87 0.92
4 0.81 0.41 0.84 0.91 0.78 0.26 0.83 0.90
5 0.65 0.38 0.69 0.85 0.61 0.25 0.67 0.84

C100

1 0.70 0.28 0.80 0.80 0.71 0.31 0.78 0.84
2 0.66 0.29 0.76 0.78 0.67 0.29 0.75 0.82
3 0.62 0.28 0.73 0.76 0.62 0.30 0.70 0.81
4 0.56 0.27 0.67 0.73 0.57 0.27 0.65 0.78
5 0.43 0.23 0.52 0.68 0.44 0.24 0.51 0.74

Table 48: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type fog in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.88 0.39 0.91 0.95 0.87 0.31 0.90 0.95
2 0.83 0.39 0.87 0.93 0.81 0.24 0.86 0.92
3 0.79 0.43 0.83 0.90 0.76 0.27 0.81 0.90
4 0.70 0.48 0.74 0.85 0.64 0.27 0.70 0.86
5 0.40 0.37 0.42 0.70 0.33 0.24 0.36 0.79

C100

1 0.69 0.30 0.79 0.80 0.70 0.33 0.77 0.84
2 0.62 0.31 0.72 0.76 0.62 0.31 0.69 0.80
3 0.55 0.31 0.65 0.72 0.54 0.28 0.62 0.77
4 0.46 0.30 0.54 0.68 0.43 0.25 0.50 0.73
5 0.24 0.25 0.23 0.69 0.18 0.14 0.19 0.77

Table 49: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type contrast in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.85 0.37 0.88 0.93 0.84 0.36 0.88 0.93
2 0.78 0.39 0.82 0.89 0.77 0.37 0.81 0.90
3 0.73 0.40 0.77 0.88 0.71 0.35 0.76 0.89
4 0.55 0.37 0.59 0.83 0.53 0.29 0.57 0.85
5 0.36 0.27 0.38 0.82 0.33 0.18 0.36 0.83

C100

1 0.68 0.27 0.79 0.79 0.70 0.32 0.78 0.83
2 0.64 0.24 0.75 0.77 0.66 0.31 0.74 0.81
3 0.60 0.26 0.72 0.75 0.63 0.31 0.71 0.80
4 0.51 0.24 0.62 0.70 0.53 0.30 0.60 0.77
5 0.36 0.21 0.44 0.66 0.38 0.27 0.42 0.74

Table 50: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type pixelate in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.89 0.39 0.91 0.95 0.88 0.36 0.91 0.95
2 0.88 0.37 0.91 0.95 0.88 0.30 0.91 0.95
3 0.88 0.39 0.90 0.95 0.87 0.32 0.90 0.94
4 0.87 0.39 0.90 0.94 0.86 0.30 0.89 0.94
5 0.84 0.36 0.88 0.93 0.83 0.28 0.87 0.93

C100

1 0.71 0.29 0.81 0.81 0.72 0.32 0.79 0.85
2 0.71 0.29 0.81 0.81 0.71 0.32 0.79 0.84
3 0.70 0.28 0.80 0.80 0.71 0.31 0.78 0.84
4 0.68 0.30 0.78 0.79 0.69 0.33 0.76 0.83
5 0.62 0.28 0.74 0.75 0.64 0.30 0.72 0.80

Table 51: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type brightness in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.81 0.40 0.85 0.92 0.78 0.27 0.84 0.91
2 0.81 0.39 0.85 0.91 0.79 0.27 0.84 0.91
3 0.76 0.40 0.80 0.89 0.72 0.26 0.78 0.89
4 0.67 0.34 0.73 0.86 0.63 0.20 0.70 0.86
5 0.64 0.35 0.69 0.85 0.60 0.22 0.67 0.84

C100

1 0.63 0.27 0.74 0.76 0.64 0.30 0.72 0.80
2 0.63 0.29 0.74 0.76 0.64 0.31 0.72 0.81
3 0.59 0.27 0.70 0.75 0.60 0.28 0.68 0.80
4 0.54 0.25 0.66 0.72 0.55 0.26 0.64 0.77
5 0.50 0.22 0.61 0.70 0.52 0.27 0.60 0.76

Table 52: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type elastic transform in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.89 0.41 0.91 0.95 0.88 0.37 0.91 0.95
2 0.80 0.41 0.83 0.91 0.77 0.27 0.82 0.91
3 0.67 0.45 0.71 0.84 0.60 0.24 0.67 0.85
4 0.51 0.45 0.53 0.77 0.44 0.25 0.48 0.79
5 0.31 0.33 0.30 0.76 0.26 0.16 0.30 0.74

C100

1 0.71 0.29 0.81 0.81 0.72 0.33 0.79 0.85
2 0.62 0.27 0.73 0.77 0.62 0.27 0.71 0.81
3 0.55 0.29 0.66 0.72 0.54 0.26 0.63 0.77
4 0.49 0.27 0.58 0.69 0.47 0.24 0.55 0.74
5 0.40 0.26 0.48 0.62 0.35 0.19 0.41 0.73

Table 53: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian blur in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.82 0.38 0.86 0.92 0.80 0.31 0.85 0.91
2 0.77 0.40 0.81 0.89 0.75 0.32 0.81 0.89
3 0.75 0.40 0.79 0.89 0.73 0.33 0.79 0.88
4 0.72 0.37 0.77 0.88 0.70 0.28 0.76 0.88
5 0.70 0.38 0.75 0.86 0.68 0.30 0.73 0.86

C100

1 0.66 0.26 0.77 0.78 0.67 0.29 0.76 0.82
2 0.62 0.24 0.74 0.76 0.64 0.30 0.72 0.81
3 0.61 0.25 0.72 0.76 0.63 0.30 0.71 0.81
4 0.59 0.24 0.71 0.75 0.61 0.29 0.69 0.80
5 0.57 0.24 0.69 0.73 0.59 0.28 0.67 0.79

Table 54: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type jpeg compression in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.87 0.39 0.90 0.95 0.87 0.37 0.90 0.95
2 0.87 0.36 0.90 0.94 0.86 0.32 0.89 0.94
3 0.88 0.38 0.91 0.95 0.88 0.36 0.91 0.95
4 0.87 0.39 0.90 0.94 0.87 0.37 0.90 0.94
5 0.85 0.40 0.89 0.93 0.84 0.32 0.88 0.93

C100

1 0.62 0.25 0.73 0.77 0.64 0.30 0.72 0.81
2 0.56 0.24 0.68 0.74 0.58 0.28 0.67 0.78
3 0.69 0.29 0.80 0.79 0.70 0.32 0.78 0.83
4 0.63 0.28 0.75 0.76 0.64 0.30 0.72 0.80
5 0.56 0.26 0.67 0.73 0.58 0.31 0.66 0.77

Table 55: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type saturate in the feature space for naturally trained and robust models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.85 0.38 0.88 0.94 0.84 0.35 0.88 0.94
2 0.78 0.34 0.82 0.91 0.78 0.33 0.82 0.91
3 0.72 0.37 0.77 0.89 0.72 0.34 0.77 0.88
4 0.79 0.37 0.83 0.91 0.79 0.36 0.83 0.92
5 0.71 0.34 0.76 0.88 0.70 0.31 0.76 0.88

C100

1 0.68 0.28 0.79 0.79 0.69 0.31 0.77 0.83
2 0.62 0.25 0.74 0.76 0.64 0.30 0.73 0.80
3 0.55 0.25 0.68 0.72 0.58 0.30 0.66 0.76
4 0.60 0.25 0.72 0.74 0.63 0.30 0.71 0.79
5 0.52 0.23 0.65 0.69 0.54 0.28 0.63 0.75

Table 56: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type spatter in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

C10

1 0.80 0.35 0.84 0.92 0.79 0.33 0.84 0.92
2 0.68 0.35 0.73 0.88 0.67 0.30 0.72 0.88
3 0.62 0.32 0.67 0.86 0.59 0.22 0.66 0.86
4 0.50 0.29 0.55 0.83 0.46 0.18 0.52 0.83
5 0.40 0.29 0.43 0.82 0.35 0.15 0.40 0.82

C100

1 0.65 0.27 0.76 0.77 0.66 0.31 0.74 0.81
2 0.57 0.26 0.69 0.73 0.59 0.29 0.67 0.77
3 0.53 0.25 0.64 0.70 0.54 0.27 0.63 0.74
4 0.45 0.23 0.57 0.66 0.46 0.25 0.55 0.71
5 0.39 0.21 0.49 0.64 0.39 0.21 0.49 0.66

Table 57: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type speckle noise in the feature space for naturally trained and robust models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.50 0.49 0.70 0.04 0.35 0.35 0.48 0.06
2 0.45 0.44 0.64 0.04 0.31 0.31 0.44 0.05
3 0.38 0.38 0.49 0.04 0.24 0.24 0.29 0.05
4 0.30 0.30 0.34 0.04 0.17 0.17 0.17 0.07
5 0.23 0.22 0.25 0.04 0.12 0.12 0.12 0.09

Table 58: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type brightness in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.24 0.24 0.26 0.05 0.12 0.12 0.14 0.10
2 0.15 0.15 0.18 0.06 0.07 0.07 0.10 0.13
3 0.08 0.08 0.11 0.08 0.05 0.04 0.07 0.15
4 0.04 0.03 0.08 0.12 0.03 0.03 0.06 0.16
5 0.03 0.02 0.06 0.12 0.03 0.02 0.06 0.15

Table 59: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type contrast in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.32 0.31 0.57 0.05 0.32 0.31 0.48 0.06
2 0.20 0.19 0.42 0.04 0.30 0.29 0.46 0.06
3 0.07 0.06 0.28 0.04 0.25 0.24 0.38 0.07
4 0.05 0.04 0.19 0.04 0.22 0.21 0.34 0.08
5 0.04 0.04 0.18 0.05 0.19 0.18 0.29 0.08

Table 60: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type defocus in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.45 0.44 0.69 0.04 0.31 0.30 0.49 0.05
2 0.32 0.31 0.49 0.03 0.22 0.22 0.30 0.05
3 0.46 0.45 0.70 0.04 0.36 0.35 0.51 0.06
4 0.42 0.40 0.67 0.04 0.35 0.34 0.52 0.06
5 0.31 0.30 0.60 0.04 0.33 0.32 0.51 0.06

Table 61: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type elastic in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.22 0.23 0.17 0.04 0.06 0.06 0.06 0.08
2 0.16 0.16 0.12 0.05 0.04 0.04 0.05 0.10
3 0.11 0.11 0.08 0.05 0.03 0.03 0.03 0.10
4 0.09 0.10 0.07 0.05 0.03 0.03 0.03 0.10
5 0.05 0.05 0.07 0.06 0.02 0.02 0.02 0.09

Table 62: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type fog in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.33 0.33 0.45 0.03 0.23 0.22 0.27 0.05
2 0.19 0.19 0.25 0.03 0.13 0.13 0.13 0.06
3 0.13 0.12 0.20 0.03 0.09 0.09 0.09 0.08
4 0.12 0.12 0.18 0.03 0.08 0.09 0.08 0.07
5 0.09 0.09 0.14 0.03 0.07 0.07 0.06 0.08

Table 63: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type frost in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.42 0.41 0.68 0.04 0.36 0.35 0.51 0.06
2 0.34 0.33 0.64 0.03 0.36 0.35 0.53 0.05
3 0.22 0.21 0.49 0.03 0.34 0.33 0.49 0.05
4 0.12 0.11 0.24 0.02 0.30 0.30 0.45 0.05
5 0.04 0.04 0.07 0.02 0.22 0.22 0.34 0.04

Table 64: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.42 0.41 0.65 0.05 0.34 0.33 0.48 0.06
2 0.31 0.30 0.57 0.04 0.32 0.31 0.48 0.06
3 0.19 0.18 0.45 0.04 0.30 0.29 0.41 0.07
4 0.13 0.13 0.33 0.04 0.27 0.26 0.40 0.07
5 0.07 0.06 0.23 0.04 0.22 0.21 0.36 0.07

Table 65: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type glass in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.38 0.37 0.70 0.03 0.36 0.35 0.51 0.05
2 0.27 0.27 0.49 0.03 0.35 0.34 0.49 0.05
3 0.21 0.20 0.41 0.03 0.34 0.34 0.50 0.05
4 0.10 0.10 0.15 0.02 0.29 0.29 0.43 0.05
5 0.04 0.04 0.09 0.02 0.22 0.21 0.34 0.04

Table 66: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type impulse in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.49 0.48 0.72 0.04 0.36 0.35 0.50 0.06
2 0.49 0.48 0.73 0.04 0.36 0.35 0.49 0.06
3 0.48 0.47 0.69 0.04 0.36 0.35 0.50 0.06
4 0.47 0.46 0.70 0.04 0.36 0.35 0.52 0.06
5 0.43 0.42 0.71 0.04 0.36 0.35 0.51 0.06

Table 67: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type jpeg in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.42 0.41 0.65 0.05 0.34 0.33 0.48 0.06
2 0.29 0.28 0.54 0.04 0.32 0.31 0.45 0.07
3 0.18 0.17 0.37 0.04 0.27 0.26 0.41 0.07
4 0.12 0.11 0.27 0.05 0.24 0.23 0.38 0.07
5 0.09 0.08 0.22 0.06 0.21 0.20 0.33 0.07

Table 68: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type motion in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.49 0.48 0.71 0.05 0.36 0.35 0.50 0.06
2 0.49 0.48 0.71 0.05 0.35 0.35 0.50 0.06
3 0.47 0.46 0.70 0.05 0.35 0.34 0.49 0.06
4 0.43 0.42 0.69 0.04 0.34 0.33 0.48 0.06
5 0.40 0.39 0.65 0.04 0.33 0.32 0.48 0.06

Table 69: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type pixelate in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.42 0.41 0.67 0.04 0.36 0.35 0.52 0.06
2 0.33 0.32 0.59 0.03 0.36 0.35 0.51 0.05
3 0.23 0.22 0.43 0.03 0.34 0.33 0.50 0.05
4 0.12 0.11 0.30 0.02 0.29 0.28 0.48 0.05
5 0.07 0.07 0.20 0.02 0.24 0.23 0.40 0.05

Table 70: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type shot in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.30 0.29 0.50 0.02 0.27 0.27 0.37 0.04
2 0.15 0.15 0.28 0.02 0.17 0.17 0.18 0.04
3 0.15 0.15 0.26 0.02 0.15 0.15 0.18 0.04
4 0.09 0.09 0.10 0.02 0.08 0.08 0.09 0.05
5 0.08 0.08 0.10 0.03 0.07 0.07 0.08 0.07

Table 71: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type snow in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.33 0.32 0.57 0.05 0.32 0.31 0.46 0.06
2 0.26 0.25 0.50 0.05 0.30 0.29 0.45 0.06
3 0.22 0.21 0.41 0.05 0.27 0.26 0.41 0.07
4 0.19 0.18 0.37 0.05 0.25 0.24 0.42 0.07
5 0.16 0.15 0.32 0.05 0.23 0.21 0.38 0.07

Table 72: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type zoom in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.26 0.21 0.51 0.16 0.24 0.19 0.45 0.18
2 0.25 0.21 0.50 0.16 0.23 0.18 0.45 0.17
3 0.23 0.19 0.45 0.16 0.21 0.17 0.42 0.17
4 0.20 0.16 0.38 0.15 0.19 0.15 0.35 0.17
5 0.17 0.14 0.31 0.16 0.16 0.13 0.29 0.17

Table 73: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type brightness in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.07 0.06 0.13 0.15 0.05 0.04 0.11 0.15
2 0.04 0.04 0.08 0.19 0.03 0.02 0.08 0.19
3 0.03 0.02 0.05 0.29 0.02 0.01 0.04 0.32
4 0.02 0.02 0.02 0.47 0.01 0.01 0.01 0.56
5 0.02 0.02 0.01 0.56 0.01 0.01 0.01 0.59

Table 74: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type contrast in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.10 0.09 0.17 0.13 0.09 0.07 0.16 0.14
2 0.06 0.05 0.11 0.14 0.05 0.04 0.10 0.14
3 0.04 0.03 0.07 0.19 0.03 0.02 0.06 0.15
4 0.03 0.03 0.05 0.24 0.02 0.02 0.04 0.18
5 0.03 0.03 0.04 0.30 0.02 0.01 0.03 0.23

Table 75: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type defocus in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.20 0.17 0.39 0.13 0.18 0.15 0.35 0.15
2 0.13 0.11 0.26 0.12 0.11 0.10 0.21 0.15
3 0.20 0.17 0.40 0.14 0.18 0.15 0.36 0.15
4 0.19 0.16 0.34 0.13 0.16 0.13 0.29 0.16
5 0.13 0.12 0.22 0.13 0.11 0.10 0.19 0.15

Table 76: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type elastic in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.05 0.05 0.09 0.14 0.04 0.04 0.09 0.15
2 0.04 0.03 0.07 0.17 0.03 0.02 0.07 0.17
3 0.03 0.02 0.05 0.19 0.02 0.02 0.05 0.21
4 0.03 0.02 0.06 0.17 0.02 0.02 0.05 0.19
5 0.03 0.02 0.05 0.16 0.02 0.01 0.04 0.19

Table 77: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type fog in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.19 0.16 0.37 0.13 0.17 0.15 0.32 0.15
2 0.11 0.10 0.21 0.12 0.10 0.09 0.17 0.13
3 0.07 0.06 0.14 0.13 0.06 0.05 0.13 0.13
4 0.06 0.06 0.11 0.13 0.05 0.05 0.11 0.13
5 0.05 0.04 0.09 0.12 0.04 0.04 0.09 0.13

Table 78: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type frost in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.22 0.18 0.44 0.15 0.21 0.18 0.41 0.16
2 0.19 0.16 0.36 0.14 0.18 0.15 0.34 0.15
3 0.14 0.12 0.26 0.14 0.13 0.11 0.21 0.17
4 0.09 0.08 0.16 0.13 0.08 0.07 0.14 0.16
5 0.05 0.04 0.08 0.14 0.04 0.03 0.08 0.14

Table 79: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type gaussian in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.16 0.14 0.31 0.13 0.14 0.12 0.27 0.15
2 0.10 0.09 0.16 0.13 0.08 0.07 0.12 0.15
3 0.06 0.05 0.12 0.13 0.05 0.04 0.09 0.15
4 0.05 0.04 0.09 0.14 0.03 0.03 0.07 0.15
5 0.04 0.03 0.08 0.15 0.02 0.02 0.06 0.15

Table 80: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type glass in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.19 0.16 0.38 0.15 0.19 0.15 0.36 0.16
2 0.15 0.13 0.29 0.14 0.14 0.12 0.24 0.16
3 0.12 0.10 0.25 0.13 0.11 0.09 0.23 0.16
4 0.08 0.07 0.13 0.13 0.06 0.05 0.11 0.15
5 0.04 0.04 0.07 0.14 0.03 0.03 0.07 0.14

Table 81: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type impulse in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.25 0.21 0.46 0.16 0.23 0.19 0.43 0.16
2 0.25 0.20 0.46 0.16 0.22 0.18 0.42 0.17
3 0.25 0.20 0.47 0.16 0.23 0.19 0.43 0.17
4 0.24 0.20 0.45 0.15 0.22 0.18 0.39 0.16
5 0.23 0.19 0.45 0.15 0.21 0.17 0.41 0.16

Table 82: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type jpeg in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.16 0.14 0.31 0.13 0.15 0.13 0.26 0.15
2 0.11 0.10 0.17 0.13 0.09 0.08 0.15 0.15
3 0.07 0.06 0.10 0.16 0.05 0.04 0.09 0.17
4 0.04 0.04 0.07 0.19 0.03 0.03 0.06 0.21
5 0.04 0.03 0.06 0.21 0.03 0.02 0.05 0.23

Table 83: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type motion in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.23 0.19 0.45 0.15 0.21 0.17 0.41 0.15
2 0.23 0.19 0.43 0.15 0.20 0.17 0.38 0.17
3 0.20 0.17 0.39 0.14 0.17 0.14 0.34 0.15
4 0.17 0.15 0.32 0.13 0.16 0.13 0.29 0.15
5 0.15 0.13 0.30 0.13 0.14 0.12 0.27 0.14

Table 84: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type pixelate in the pixel space for naturally trained and robsut models.
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model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.22 0.18 0.43 0.15 0.21 0.17 0.39 0.17
2 0.18 0.15 0.34 0.14 0.17 0.14 0.33 0.15
3 0.14 0.12 0.27 0.14 0.13 0.11 0.23 0.16
4 0.09 0.08 0.16 0.13 0.07 0.06 0.14 0.15
5 0.06 0.05 0.10 0.14 0.05 0.04 0.09 0.16

Table 85: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type shot in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.14 0.11 0.29 0.14 0.13 0.11 0.28 0.15
2 0.08 0.07 0.16 0.15 0.08 0.07 0.14 0.16
3 0.07 0.06 0.13 0.15 0.07 0.05 0.12 0.18
4 0.05 0.05 0.07 0.17 0.05 0.05 0.07 0.19
5 0.06 0.05 0.08 0.16 0.05 0.05 0.09 0.17

Table 86: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type snow in the pixel space for naturally trained and robsut models.

model natural TRADES(2)

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

dataset level

I

1 0.13 0.11 0.22 0.13 0.12 0.10 0.18 0.16
2 0.10 0.09 0.18 0.13 0.09 0.08 0.14 0.15
3 0.09 0.08 0.14 0.14 0.07 0.06 0.12 0.15
4 0.08 0.07 0.14 0.14 0.06 0.05 0.12 0.16
5 0.06 0.06 0.10 0.15 0.05 0.04 0.09 0.16

Table 87: The NCG accuracy, test accuacy and the test accuracy conditioned on the NCG correctness on
corruption type zoom in the pixel space for naturally trained and robsut models.
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